<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 11 Issue 2" %>
Partition-Theoretic Interpretations of Certain Modular Equations of Schröter, Russell, and Ramanujan
Bruce C. Berndt
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
berndt@math.uiuc.edu
Annals of Combinatorics 11 (2) p.115-125 June, 2007
AMS Subject Classification: 05A17, 11P83
Abstract:
We show that certain modular equations studied by Schröoter, Russell, and Ramanujan yield elegant identities for colored partitions.
Keywords: partitions, colored partitions, theta-functions, modular equations

References:

1. N.D. Baruah and B.C. Berndt, Partition identities and Ramanujan's modular equations, J. Combin. Theory Ser. A 114 (6) (2007) 1024--1045.

2. B.C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.

3. A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd Ed., Dover Publications, New York, 1961.

4. S.D. Chowla, An elementary treatment of the modular equation of the third order, J. Indian Math. Soc. 17 (1927) 37--40.

5. S.D. Chowla, The Collected Papers of Sarvadaman Chowla, Vol. I, 1925--1935, Centre de Recherches Mathématiques, Montreal, 1999.

6. H.M. Farkas and I. Kra, Partitions and theta constant identities, In: The Mathematics of Leon Ehrenpreis, Contemp. Math. No. 251, American Mathematical Society, Providence, RI, (2000) pp. 197--203.

7. E. Fiedler, Ueber eine besondere Classe irrationaler Modulargleichungen der elliptischen Functionen, Vierteljahrsschr. Naturforsch. Gesell. (Zürich) 12 (1885) 129--229.

8. C. Guetzlaff, Aequatio modularis pro transformatione functionum ellipticarum septimi ordinis, J. Reine Angew. Math. 12 (1834) 173--177.

9. M. Hanna, The modular equations, Proc. London Math. Soc. (2) 28 (1928) 46--52.

10. M.D. Hirschhorn, The case of the mysterious sevens, Int. J. Number Theory 2 (2) (2006) 213--216.

11. C.G.J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Sumptibus Fratrum Bornträger, Regiomonti, 1829.

12. C.G.J. Jacobi, Gesammelte Werke, Erster Band, G. Reimer, Berlin, 1881.

13. F. Klein, Zur Theorie der elliptischen Modulfunctionen, Math. Ann. 17 (1) (1880) 62--70.

14. A.M. Legendre, Traité des Fonctions Elliptiques, Tome 1, Huzard-Courcier, Paris, 1825.

15. S. Ramanujan, Notebooks, Vols. 1-2, Tata Institute of Fundamental Research, Bombay, 1957.

16. R. Russell, On kl􀀀k0l0 modular equations, Proc. London Math. Soc. 19 (1887) 90--111.

17. R. Russell, On modular equations, Proc. London Math. Soc. 21 (1890) 351--395.

18. H. Schröter, De aequationibus modularibus, Dissertatio Inauguralis, Albertina Litterarum Universitate, Regiomonti, 1854.

19. H. Schröter, Ueber Modulargleichungen der elliptischen Functionen, Auszug aus einem Schreiben an Herrn L. Kronecker, J. Reine Angew. Math. 58 (1861) 378--379.

20. H. Schröter, Beiträge zur Theorie der elliptischen Funktionen, Acta Math. 5 (1884) 205--208.

21. S.O. Warnaar, A generalization of the Farkas and Kra partition theorem for modulus 7, J. Combin. Theory Ser. A 110 (2005) 43--52.