<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 11 Issue 2" %>
Dense Near OctagonsWith Four Points on Each Line, I
Bart De Bruyn
Ghent University, Department of Pure Mathematics and Computer Algebra, Galglaan 2, B-9000 Gent, Belgium
bdb@cage.ugent.be
Annals of Combinatorics 11 (2) p.127-142 June, 2007
AMS Subject Classification: 05B25, 51E12
Abstract:
In this paper, we start the classification of the dense near octagons of order (3, t). We shall determine all dense near octagons of order (3, t) with a big hex. In order to achieve this goal, we must also classify all spreads of symmetry of all dense near hexagons of order (3, t).
Keywords: near polygon, near octagon, generalized quadrangle, big hex

References:

1. R.W. Ahrens and G. Szekeres, On a combinatorial generalization of 27 lines associated with a cubic surface, J. Austral. Math. Soc. 10 (1969) 485-492.

2. A. Bichara, F. Mazzocca, and C. Somma, On the classification of generalized quadrangles in a finite affine space AG(3, 2h), Boll. Unione Mat. Ital. Sez. B (5) 17 (1) (1980) 298-307.

3. N. Biggs, Algebraic Graph Theory, Cambridge Tracts in Mathematics, Vol. 67, Cambridge University Press, London, 1974.

4. A.E. Brouwer, A.M. Cohen, J.I. Hall, and H.A.Wilbrink, Near polygons and Fischer spaces, Geom. Dedicata 49 (1994) 349-368.

5. A.E. Brouwer and H.A. Wilbrink, The structure of near polygons with quads, Geom. Dedicata 14 (1983) 145-176.

6. P.J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982) 75-86.

7. B. De Bruyn, Generalized quadrangles with a spread of symmetry, Europ. J. Combin. 20 (1999) 759-771.

8. B. De Bruyn, On the number of nonisomorphic glued near hexagons, Bull. Belg. Math. Soc. Simon Stevin 7 (2000) 493-510.

9. B. De Bruyn, Near hexagons with four points on a line, Adv. Geom. 1 (2001) 211-228.

10. B. De Bruyn. The glueing of near polygons, Bull. Belg. Math. Soc. Simon Stevin 9 (2002) 621-630.

11. B. De Bruyn, Decomposable near polygons, Ann. Comb. 8 (2004) 251-267.

12. B. De Bruyn, Compatible spreads of symmetry in near polygons, J. Algebraic Combin. 23 (2006) 137-148.

13. B. De Bruyn, A general theory for dense near polygons with a nice chain of subpolygons, Europ. J. Combin. 28 (5) (2007) 1395-1411.

14. B. De Bruyn, Near Polygons, Birkhäuser, Basel, 2006.

15. B. De Bruyn, Dense near octagons with four points on every line, II, Adv. Geom. 7 (2007) 191-206.

16. B. De Bruyn, Dense near octagons with four points on every line, III, preprint.

17. B. De Bruyn and F. De Clerck, On linear representations of near hexagons, Europ. J. Combin. 20 (1999) 759-771.

18. B. De Bruyn and P. Vandecasteele, Two conjectures regarding dense near polygons with three points on each line, Europ. J. Combin. 24 (2003) 631-647.

19. B. De Bruyn and P. Vandecasteele, Near polygons having a big sub near polygon isomorphic to HDD(2n-1, 4), Ars Combin. 79 (2006) 47-64.

20. S. Dixmier and F. Zara, Etude d'un quadrangle généralisé autour de deux de ses points non liés, Unpublished manuscript, 1976.

21. S.E. Payne, Nonisomorphic generalized quadrangles, J. Algebra 18 (1971) 201-212.

22. S.E. Payne and J.A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, Vol. 110, Pitman, Boston, 1984.

23. E.E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980) 1-72.