<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 11 Issue 2" %>
The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations
Doron Zeilberger
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
zeilberg@math.rutgers.edu
Annals of Combinatorics 11 (2) p.241-247 June, 2007
AMS Subject Classification: 05A, 33F10
Abstract:
Many explicit determinant evaluations can be automatically conjectured, and then rigorously automatically proved, once we suspect that they belong to the Holonomic Ansatz.
Keywords: computer-generated combinatorics, explicit evaluations of determinants

References:

[AS] G.E. Andrews and D.W. Stanton, Determinants in plane partition enumeration, Europ. J. Combin. 19 (1998) 273-282.

[C] F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math. 217 (2000) 115-134.

[K1] C. Krattenthaler, Advanced determinant calculus, In: The Andrews Festschrift, D. Foata and G.-N. Han Eds., S´em. Lothar. Comb. 42 (1999) B42q.

[K2] C. Krattenthaler, Advanced determinant calculus: a complement, Linear Algebra Appl. 411 (2005) 68-166. Avaiable from: http://arXiv.org/abs/math.Co/0503507.

[MRR1] W.H. Mills, D.H. Robbins, and H. Rumsey, Enumeration of a Symmetry Class of Plane Partitions, Discrete Math. 67 (1987) 43-55.

[MRR2] W.H. Mills, D.H. Robbins, and H. Rumsey, Proof of the Macdonald conjecture, Invent. Math. 66 (1982) 73-87.

[PW] M. Petkovšek and H. Wilf, A high-tech proof of the Mills-Robbins-Rumsey determinant formula, Electron. J. Combin. 3 (2) (1996) #R19.

[SZ] B. Salvy and P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software 20 (2) (1994) 163- 177.

[W] H.S. Wilf, Mathematics: an experimental science, to appear in “Princeton Companion to Mathematics”, W.T. Gowers Ed., Princeton University Press. Available from: http://www.math.upenn.edu/~wilf/reprints.html.

[Z1] D. Zeilberger, Foundations The Holonomic ansatz I. foundations and applications to lattice walk counting, submitted. Available from: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ansatzI.html.

[Z2] D. Zeilberger, A Holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (3) (1990) 321-368.

[Z3] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80 (2) (1990) 207-211.

[Z4] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (3) (1991) 195-204.

[Z5] D. Zeilberger, Theorems for a price: tomorrow's semi-rigorous mathematical culture, Notices Amer. Math. Soc. 40 (8) 978-981; reprinted in Math. Intelligencer 16 (4) 11-14.