<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
A New Lower Bound on the Number of Odd Values of the Ordinary Partition Function
Dennis Eichhorn
Department of Mathematics, University of California, Irvine, CA 92697, USA
Annals of Combinatorics 13 (3) pp.297-303 September, 2009
AMS Subject Classification: 05A17, 11P81, 11P82
The parity of $p(n)$, the ordinary partition function, has been studied for at least a century, yet it still remains something of a mystery. Although much work has been done, the known lower bounds for the number of even and odd values of $p(n)$ for $n \leq N$ still appear to have a great deal of room for improvement. In this paper, we use classical methods to give a new lower bound for the number of odd values of $p(n)$.
Keywords: parity, partitions, odd values, p(n)


1. Ahlgren, S.: Distribution of parity of the partition function in arithmetic progressions. Indag. Math. (N.S.) 10, 173-–181 (1999)

2. Berndt, B.C., Yee, A.J., Zaharescu, A.: On the parity of partition functions. Internat. J. Math. 14, 437-–459 (2003)

3. Berndt, B.C., Yee, A.J., Zaharescu, A.: New theorems on the parity of partition functions. J. Reine Angew. Math. 566, 91-–109 (2004)

4. Bombieri, E., Davenport, H.: Small differences between prime numbers. Proc. Roy. Soc. Ser. A 293, 1-–18 (1966)

5. Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101, 1-–17 (1990)

6. Hirschhorn, M.D., Sellers, J.A.: Two congruences involving 4-cores. Electron. J. Combin. 3, #10 (1996)

7. Hirschhorn, M.D., Subbarao, M.V.: On the parity of p(n). Acta Arith. 50, 355-–356 (1988)

8. Kolberg, O.: Note on the parity of the partition function. Math. Scand. 7, 377-–378 (1959)

9. Ono, K.: Parity of the partition function in arithmetic progressions. J. Reine Angew. Math. 472, 1–-15 (1996)

10. Nicolas, J.-L., Ruzsa, I.Z., S´ark¨ozy, A.: On the parity of additive representation functions. J. Number Theory 73, 292–-317 (1998)

11. Parkin, T.R., Shanks, D.: On the distribution of parity in the partition function. Math. Comp. 21, 466-–480 (1967)