<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
Non-Crossing Tableaux
Pavlo Pylyavskyy
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02141, USA
pasha@math.mit.edu
Annals of Combinatorics 13 (3) pp.323-339 September, 2009
AMS Subject Classification: 05E99, 05A99
Abstract:
In combinatorics there is a well-known duality between non-nesting and non-crossing objects. In algebra there are many objects which are {\it {standard}}, for example, standard Young tableaux, standard monomials, and standard bitableaux. We adopt a point of view that these standard objects are really non-nesting, and we find their non-crossing counterparts.
Keywords: Young symmetrizer, Specht module, Weyl module, standard Young tableaux, standard monomials, standard bitableaux, non-crossing tableaux, non-crossing monomials, non-crossing bitableaux

References:

1. Chen, W.Y.C., Deng, E.Y.P., Du, R.R.X., Stanley, R.P., Yan, C.H.: Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc. 359, 1555–-1575 (2007)

2. Clausen, M.: Letter-place algebras and characteristic free approach to the representation theory of the general linear and symmetric groups. Adv. Math. 33, 161-–191 (1979)

3. Desarmenien, J.: An algorithm for the Rota straightening formula. Discrete Math. 30, 51-–68 (1980)

4. Deruyts, J.: Essai d'une theorie generale des formes algebriques. Mem. Soc. Roy. Sci. Liege 17, 1–1-56 (1892)

5. Desarmenien, J., Kung, J., Rota, G.-C.: Invariant theory, Young bitableaux, and combinatorics. Adv. Math. 27, 63-–92 (1978)

6. Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1999)

7. Green, J.A.: Polynomial representations of GLn. Springer-Verlag, Berlin (1980)

8. Garsia, A.M., Wachs, M.L.: Combinatorial aspects of skew representations of the symmetric group. J. Combin. Theory Ser. A 50, 47–-81 (1989)

9. Lakshmibai, V., Littelmann, P., Magyar, P.: Standard monomial theory and applications. In: Broer, A. (ed.) Representation Theories and Algebraic Geometry, pp. 319–-364. Kluwer Academic Publishing, Dordrecht (1998)

10. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci. AMS, Providence (2001)

11. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Springer-Verlag, New York (2004)

12. Schur, I.: Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. In: Gesammelte Abhandlungen I, pp. 1-70. Springer, Berlin (1973)

13. Specht,W.: Die irreduziblen Darstellungen der symmetrischen Gruppe. Math. Z. 39, 696–- 711 (1935)

14. Sturmfels, B.: Gr¨obner Bases and Convex Polytopes. AMS, Providence (1995)