<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
Multilateral Inversion of Ar, Cr, and Dr Basic Hypergeometric Series
Michael J. Schlosser
Fakult\"at f\"ur Mathematik, Universit\"at Wien, Nordbergstra{\ss}e 15, A-1090 Vienna, Austria
michael.schlosser@univie.ac.at
Annals of Combinatorics 13 (3) pp.341-363 September, 2009
AMS Subject Classification: 33D67; 15A09, 33D15
Abstract:
In [Electron. J. Combin. \textbf{10} (2003), \#R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised ${}_6\psi_6$ summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's $A_r$ and $C_r$ extensions and from the author's recent $A_r$ extension of Bailey's ${}_6\psi_6$ summation formula. By combining these new multidimensional matrix inverses with $A_r$ and $D_r$ extensions of Jackson's ${}_8\phi_7$ summation theorem three balanced very-well-poised ${}_8\psi_8$ summation theorems associated to the root systems $A_r$ and $C_r$ are derived.
Keywords: Bilateral basic hypergeometric series, Bailey's ${}_6\psi_6$ summation, Jackson's ${}_8\phi_7$ summation, ${}_8\psi_8$ summation, $A_r$ series, $C_r$ series, $D_r$ series

References:

1. Andrews, G.E.: Connection coefcient problems and partitions, In: Relations Between Combinatorics and Other Parts of Mathematics, pp. 1–-24. Amer. Math. Soc., Providence (1979)

2. Andrews, G.E.: Bailey's transform, lemma, chains and tree, In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds.) Special Fuctions 2000: Current Perspective and Future Directions, pp. 1–-22. (2001)

3. Bailey, W.N.: Series of hypergeometric type which are innite in both directions. Q. J. Math. 7, 105–-115 (1936)

4. Bhatnagar, G.: Dn basic hypergeometric series. Ramanujan J. 3, 175-–203 (1999)

5. Bhatnagar, G., Milne, S.C.: Generalized bibasic hypergeometric series, and their U(n) extensions. Adv. Math. 131, 188–-252 (1997)

6. Bhatnagar, G., Schlosser, M.J.: Cn and Dn very-well-poised 10f9 transformations. Constr. Approx. 14, 531–-567 (1998)

7. Bressoud, D.M.: A matrix inverse. Proc. Amer. Math. Soc. 88, 446–-448 (1983)

8. Denis, R.Y., Gustafson, R.A.: An SU(n) q-beta integral transformation and multiple hypergeometric series identities. SIAM J. Math. Anal. 23, 552-–561 (1992)

9. Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, In: Arnold, V.I. et al. (eds.) The Arnold-Gelfand Mathematical Seminars, pp. 171-–204. Birkh¨auser, Boston (1997)

10. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Second Edition, Encyclopedia of Mathematics and Its Applications 96. Cambridge University Press, Cambridge (2004)

11. Gustafson, R.A.: Multilateral summation theorems for ordinary and basic hypergeometric series in U(n). SIAM J. Math. Anal. 18, 1576-–1596 (1987)

12. Gustafson, R.A.: The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras, In: Thakare, N.K. (ed.) Ramanujan International Symposium on Analysis, pp. 185–-224. Macmillan of India, New Delhi (1989)

13. Holman, W.J., III, Biedenharn, L.C., Louck, J.D.: On hypergeometric series well-poised in SU(n). SIAM J. Math. Anal. 7, 529-–541 (1976)

14. Jackson, F.H.: Summation of q-hypergeometric series. Messenger of Math. 57, 101-–112 (1921)

15. Jackson, M.: On well-poised bilateral hypergeometric series of type 8y8. Quart. J. Math. Oxford Ser. (2) 1, 63–-68 (1950)

16. Lilly, G.M., Milne, S.C.: The Cl Bailey transform and Bailey lemma. Constr. Approx. 9, 473-–500 (1993)

17. Milne, S.C.: Multiple q-series and U(n) generalizations of Ramanujan's 1y1 sum, In: Andrews, G.E. et al. (eds.) Ramanujan Revisited, pp. 473-–524. Academic Press, Boston (1988)

18. Milne, S.C.: Balanced 3f2 summation theorems for U(n) basic hypergeometric series. Adv. Math. 131, 93–-187 (1997)

19. Milne, S.C.: Transformations of U(n+1) multiple basic hypergeometric series, In: Kirillov, A.N., Tsuchiya, A., Umemura, H. (eds.) Physics and Combinatorics: Proceedings of the Nagoya 1999 International Workshop, pp. 201-–243. World Scientific, Singapore (2001)

20. Milne, S.C., Lilly, G.M.: Consequences of the Al and Cl Bailey transform and Bailey lemma. Discrete Math. 139, 319-–346 (1995)

21. Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181, 417-–447 (2004)

22. Schlosser, M.J.: Multidimensional matrix inversions and Ar and Dr basic hypergeometric series. Ramanujan J. 1, 243-–274 (1997)

23. Schlosser, M.J.: Inversion of bilateral basic hypergeometric series. Electron. J. Combin. 10, #R10 (2003)

24. Schlosser, M.J.: Elliptic enumeration of nonintersecting lattice paths. J. Combin. Theory Ser. A 114, 505-–521 (2007)

25. Schlosser, M.J.: A new multivariable 6y6 summation formula. Ramanujan J. 17, 305-–319 (2008)

26. Schlosser, M.J.: A bilateral generalization of the Bailey lemma. in preparation