<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
Stanley's Formula for Characters of the Symmetric Group
Valentin Féray
LaBRI, Université Bordeaux 1, 351 cours de la lib´eration, 33 400 Talence, France
Annals of Combinatorics 13 (4) pp.453-461 December, 2009
AMS Subject Classification: 20C30, 05E10
In his paper [9], Stanley finds a nice combinatorial formula for characters of irreducible representations of the symmetric group of rectangular shape. Then, in [10], he gives a conjectural generalisation for any shape. Here, we will prove this formula using shifted Schur functions and Jucys-Murphy elements.
Keywords:representations of the symmetric group, shifted Schur functions, Jucys-Murphy elements


1. Jucys, A.: Symmetric polynomials and the center of the symmetric group ring. Rep. Math. Phys. 5, 107--–112 (1974)

2. Murphy, G.: A new construction of Young's seminormal representation of the symmetric group. J. Algebra 69, 287--–297 (1981)

3. Okounkov, A.: Quantum immanants and higher Capelli identities. Transform. Groups 1, 99--–126 (1996)

4. Okounkov, A.: Young basis, Wick formula, and higher Capelli identities. Internat. Math. Res. Notices 17, 817--–839 (1996)

5. Okounkov, A., Olshanski, G.: Shifted Schur functions. St. Petersburg Math. J. 9, 239–--300 (1998)

6. Rattan, A.: Positivity results for Stanley's character polynomials. J. Algebra 308, 26–--43 (2007)

7. Rattan, A.: Stanley's character polynomials and coloured factorisations in the symmetric group. J. Combin. Theory Ser. A 115(4) 535--–692 (2008)

8. Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric functions, Second Edition. Springer, New York (2001)

9. Stanley, R.: Irreducible symmetric group characters of rectangular shape. Sém. Lothar. Combin. 50, B50d (2003)

10. Stanley, R.: A conjectured combinatorial interpretation of the normalized irreducible character values of the symmetric group. arXiv:math.CO/0606467 (2006)