<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
On the g-Ary Expansions of Apéry, Motzkin, Schröder and Other Combinatorial Numbers
Florian Luca1 and Igor E. Shparlinski2
1Instituto de Matemáticas, Universidad Nacional Autónoma de México, Morelia, Michoacán, C.P. 58089, México
fluca@matmor.unam.mx
2Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
igor.shparlinski@mq.edu.au
Annals of Combinatorics 14 (4) pp.507-524 December, 2010
AMS Subject Classification: 05A10, 11B83, 11D45
Abstract:
Let g≥ 2 be an integer and let (un){n≥ 1} be a sequence of integers which satisfies a relation u{n+1} = h(n) un for a rational function h(X). For example, various combinatorial numbers as well as their products satisfy relations of this type. Here, we show that under some mild technical assumptions the number of nonzero digits of un in base g is large on a set of n of asymptotic density 1. We also extend this result to a class of sequences satisfying relations of second order u{n+2} = h1(n) u{n+1} + h2(n) un with two nonconstant rational functions h1(X), h2(X)∈ Q[X]. This class includes the Apéry, Delannoy, Motzkin, and Schröder numbers.
Keywords:Apéry numbers, Motzkin numbers, Schröder numbers, representations in integer bases of special numbers, applications to S-unit equations

References:

1. Blecksmith, R., Filaseta, M., Nicol, C.: A result on the digits of an. Acta Arith. 64(4), 331--339 (1993)

2. Evertse, J.-H.: On sums of S-units and linear recurrences. Compositio Math. 53(2), 225--244 (1984)

3. Gel'fond, A.O.: Calcul des Différences Finies. Dunod, Paris (1963)

4. Hern\'andez, S., Luca, F.: Palindromic powers. Rev. Colombiana Mat. 40(2), 81--86 (2006)

5. Luca, F.: Distinct digits in base b expansions of linear recurrence sequences. Quaest. Math. 23(4), 389--404 (2000)

6. Luca, F.: Palindromes in Lucas sequences. Monatsh. Math. 138(3), 209--223 (2003)

7. Luca, F.: Arithmetic properties of positive integers with fixed digit sum. Rev. Mat. Ibero-americana 22(2), 369--412 (2006)

8. Luca, F., Shparlinski, I.E.: On the g-ary expansion of middle binomial coefficients and Catalan numbers. Rocky Mountain J. Math. (to appear)

9. Stanley, R.: Enumerative Combinatorics, Vol. 1, 2nd edition. Cambridge University Press (1997)

10. Stewart, C.L.: On the representation of an integer in two different bases. J. Reine Angew. Math. 319, 63--72 (1980)