<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
Twisted Gelfand Pairs of Complex Reflection Groups and r-Congruence Properties of Schur Functions
Hiroshi Mizukawa
Department of Mathematics, National Defense Academy of Japan, Yokosuka 239-8686, Japan
Annals of Combinatorics 15 (1) pp.119-125 January, 2011
AMS Subject Classification: 05A17, 05E05, 05E10
This note gives the r-congruence properties of Schur functions which arise from a twisted Gelfand pair (G(r; 1; n); Sn; sgn). Numerators of the Weyl character formula of type A appear in Specht modules for the complex reflection groups indexed by column partitions. This fact is applied to the study of Schur functions.
Keywords: Schur functions, cores and quotients of partitions, twisted Gelfand pairs


1. Akazawa, H., Mizukawa, H.: Orthogonal polynomials arising from the wreath products of dihedral group. J. Combin. Theory Ser. A 104(2), 371--–380 (2003)

2. Scarabotti, F., Tolli, F.: Harmonic analysis on a finite homogeneous space. Proc. Lond. Math. Soc. (3) 100(2), 348--–376 (2010)

3. Green, J.A.: Polynomial Representations of GLn, 2nd ed. Springer, Berlin (2007)

4. James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Addison-Wesley Publishing Co., Reading, Mass. (1981)

5. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, New York (1995)

6. Mizukawa, H.: Zonal spherical functions on the complex reflection groups and (n+1; m+ 1)-hypergeometric functions. Adv. Math. 184(1), 1--–17 (2004)

7. Rockmore, D.: Fast Fourier transforms for wreath products. Appl. Comput. Harmon. Anal. 2(3), 279--–292 (1995)