<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups
David Bessis1 and Victor Reiner2
1DMA - ´Ecole normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
david.bessis@ens.fr
2School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
reiner@math.umn.edu
Annals of Combinatorics 15 (2) pp.195-222 April, 2011
AMS Subject Classification: 20F55, 51F15
Abstract:
We prove an instance of the cyclic sieving phenomenon, occurring in the context of noncrossing parititions for well-generated complex reflection groups.
Keywords: complex reflection group, unitary reflection group, noncrossing partition, cyclic sieving phenomenon, rational Cherednik algebra

References:

1. Armstrong, D.: Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc. 202, #949 (2009)

2. Armstrong, D.: Braid groups, clusters, and free probability: an outline from the AIM workshop. Available at www.aimath.org/WWN/braidgroups/braidgroups.pdf (2005)

3. Athanasiadis, C.A.: On noncrossing and nonnesting partitions for classical reflection groups. Electron. J. Combin. 5, #R42 (1998)

4. Athanasiadis, C.A.: On a refinement of the generalized Catalan numbers for Weyl groups. Trans. Amer. Math. Soc. 357(1), 179–196 (2005)

5. Athanasiadis C.A., Reiner, V.: Noncrossing partitions for the group Dn. SIAM J. Discrete Math. 18(2), 397–417 (2004)

6. Berenstein, A., Burman, Y.: Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras. Trans. Amer. Math. Soc. 362(1), 229–260 (2010)

7. Berest, Y., Etingof, P., Ginzburg, V.: Finite-dimensional representations of rational Cherednik algebras. Int. Math. Res. Not. 2003(19), 1053–1088 (2003)

8. Bessis, D.: The dual braid monoid. Ann. Sci. Ecole Norm. Sup. (4) 36(5), 647–683 (2003)

9. Bessis, D.: Finite complex reflection arrangements are K(π,1). arXiv preprint math.GT/0610777

10. Bessis, D.: Garside categories, periodic loops and cyclic sets. arXiv preprint math.GT/0610778

11. Brady, T.,Watt, C.: A partial order on the orthogonal group. Comm. Algebra 30(8), 3749– 3754 (2002)

12. Broer, A.: Lectures on decomposition classes. In: Broer, A. (ed.) Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), pp. 39–83. Kluwer Acad. Publ., Dordrecht (1998)

13. Brou´e, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)

14. Chevalley, C.: Invariants of finite groups generated by reflections. Amer. J. Math. 77, 778–782 (1955)

15. Eu, S.-P., Fu, T.-S.: The cyclic sieving phenomenon for faces of generalized cluster complexes. Adv. Appl. Math. 40(3), 350–376 (2008)

16. Fomin, S., Reading, N.: Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005(44), 2709–2757 (2005)

17. Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combinatorics, pp. 63–131. Amer. Math. Soc., Providence, RI (2007)

18. Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. of Math. (2) 158(3), 977–1018 (2003)

19. F¨urlinger, J., Hofbauer, J.: q-Catalan numbers. J. Combin. Theory Ser. A 40(2), 248–264 (1985)

20. Griffeth, S.: Finite dimensional modules for rational Cherednik algebras. arXiv:math.RT/0612733.

21. Gordon, I.: On the quotient ring by diagonal invariants. Invent. Math. 153(3), 503–518 (2003)

22. Haiman, M.D.: Conjectures on the quotient ring by diagonal invariants. J. Algebraic Combin. 3(1), 17–76 (1994)

23. Kreweras, G.: Sur les partitions non crois´ees d’un cycle. Discrete Math. 1, 333–350 (1972)

24. Lehrer, G.I., Michel, J.: Invariant theory and eigenspaces for unitary reflection groups. C. R. Acad. Sci. Paris, Ser. I 336(10), 795–800 (2003)

25. Lehrer, G.I., Springer, T.A.: Reflection subquotients of unitary reflection groups. Canad. J. Math. 51(6), 1175–1193 (1999)

26. Orlik, P., Solomon, L.: Unitary reflection groups and cohomology. Invent. Math. 59(1), 77–94 (1980)

27. Panyushev, D.I.: On orbits of antichains of positive roots. European J. Combin. 30(2), 586–594 (2009)

28. Reiner, V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177(1- 3), 195–222 (1997)

29. Reiner, V., Stanton, D., White, D.: The cyclic sieving phenomenon. J. Combin. Theory Ser. A 108(1), 17–50 (2004)

30. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954)

31. Solomon, L.: Invariants of finite reflection groups. Nagoya Math. J. 22, 57–64 (1963)

32. Sommers, E.N.: B-stable ideals in the nilradical of a Borel subalgebra. Canad. Math. Bull. 48(3), 460–472 (2005)

33. Springer, T.A.: Regular elements of finite reflection groups. Invent. Math. 25, 159–198 (1974)

34. White, D.: personal communication. (2005)