<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
The q-Catalan Numbers: A Saddle Point Approach
Guy Louchard1 and Helmut Prodinger2
1Département d’Informatique, Université Libre de Bruxelles, CP 212, Boulevard du Triomphe, 1050 Bruxelles, Belgium
2Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
Annals of Combinatorics 15 (2) pp.313-329 April, 2011
AMS Subject Classification: 05A16; 60C05, 60F05
Using the saddle point method, we obtain from the generating function of the q- Catalan numbers and Cauchy’s integral formula asymptotic results in central and non-central regions.
Keywords: q-Catalan numbers, saddle point method


1. Chen, W.Y.C., Wang, C.J., Wang, L.X.W.: The limiting distribution of the coefficients of the q-Catalan numbers. Proc. Amer. Math. Soc. 136(11), 3759–3767 (2008)

2. Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci. 144(1-2), 3–58 (1995)

3. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

4. Louchard, G., Prodinger, H.: The number of inversions in permutations: a saddle point approach. J. Integer Seq. 6(2), #03.2.8 (2003)

5. Odlyzko, A.: Asymptotic enumeration methods. In: Graham, R., Götschel, M., Lovász, L. (eds.) Handbook of Combinatorics, Vol. 2, pp. 1062–1229. Elsevier Science, New York (1995)

6. Prodinger, H.: On the moments of a distribution defined by the Gaussian polynomials. J. Statist. Plann. Inference 119(2), 237–239 (2004)

7. Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Wiley- Interscience, New York (2001)