<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
New Two-Line Arrays Representing Partitions
José Plınio O. Santos1, Paulo Mondek2, and Andréia C. Ribeiro3
1Instituto de Matemática, Estatıstíca e Computacäo Científica, Departamento de Matemática Aplicada, Universidade Estadual de Campinas, Cx.P. 6065, 13083-970, Campinas, SP, Brasil
2UFMS-DMT, C. Universitária, Cx.P. 549, 79070-900, Campo Grande, MS, Brasil
3UFMS-DMT, Campus de Paranaíba, 79500-000, Paranaía, MS, Brasil
Annals of Combinatorics 15 (2) pp.341-354 April, 2011
AMS Subject Classification: 11P81; 05A17
We present combinatorial interpretations for sums into two parameters from which we have, as special cases, combinatorial interpretations for many identities of Slater’s list including Rogers-Ramanujan identities, unrestricted partitions, and Lebesgue’s partition identity. In this work we are representing a number as a vector and providing representation of this vector as a sum of vectors. It is possible to write this representation as a two-line matrix which can be interpreted as lattice paths. We provide three distinct representations for unrestricted partitions. One of them has the property of giving a complete description for the conjugate
Keywords: partitions, Rogers-Ramanujan identities


1. Andrews, G.E.: The Theory of Partitions. Addison-Wesley Publishing Co., Reading (1976)

2. Andrews, G.E.: Multiple series Rogers-Ramanujan type identities. Pacific J.Math. 114(2), 267–283 (1984)

3. Andrews, G.E.: Combinatorics and Ramanujan’s “lost” notebook. In: Anderson, I. (ed.) Surveys in Combinatorics 1985. London Math. Soc. Lecture Note Ser. Vol. 103, pp. 1–23, Cambridge University Press, London (1985)

4. Andrews, G.E.: Three-quadrant Ferrers graphs. Indian J. Math. 42(1), 1–7 (2000)

5. Aubuck, F.C.: On some new types of partitions associated with generalized Ferrers graphs. Proc. Cambridge Philos. Soc. 47, 679–686 (1951)

6. Bressound, D.M., Santos, J.P.O.,Mondek, P.: A family of partition identities proved combinatorialy. Ramanujan J. 4(3), 311–315 (2000)

7. Lebesgue, V.A.: Sommation de quelques s´eries. J. Math. Pure. Appl. 5, 42–71 (1840)

8. Ribeiro, A.C.: Aspectos combinatorios de identidades do tipo Rogers-Ramanuajan. Ph.D Thesis, Universidade Estadual de Campinas, Campinas (2006)

9. Santos, J.P.O.: Computer algebra and identities of the Rogers-Ramanujan type. Ph.D Thesis, Pennsylvania State University, University Park (1991)

10. Santos, J.P.O., Mondek, P.: Extending theorems of G¨ollnitz, a new family of partition identities. Ramanujan J. 3(4), 359–365 (1999)

11. Santos, J.P.O., Mondek, P.: A family of partitions with attached parts and “N copies of N”. Discrete Math. 222(1-3), 213–222 (2000)

12. Santos, J.P.O.: On the combinatorics of polynomial generalizations of Rogers-Ramanujantype identities. Discrete Math. 254, 497–511 (2002)

13. Santos, J.P.O., Sills, A.V.: q-Pell sequences and two identities of V. A. Lebesgue. Discrete Math. 257(1), 125–142 (2002)

14. Sills, A.V.: Computer assisted explorations of Rogers-Ramanujan type identities. Ph.D Thesis, University of Kentucky, Lexington (2002)

15. Sills, A.V.: Identities of the Rogers-Ramanujan-Slater type. Int. J. Number Theory 3(2), 293–323 (2007)

16. Slater, L.J.: Further identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2) 54(1), 147–167 (1952)