<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 13 Issue 3" %>
The Moduli Space of Curves, Double Hurwitz Numbers, and Faber’s Intersection Number Conjecture
I. P. Goulden1, D. M. Jackson1 and R. Vakil2
1Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
{ipgoulden, dmjackson}@math.uwaterloo.ca
2Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
Annals of Combinatorics 15 (3) pp.381-436 July, 2011
AMS Subject Classification: 14H10, 05E99, 14K30
We define the dimension 2g − 1 Faber-Hurwitz Chow/homology classes on the moduli space of curves, parametrizing curves expressible as branched covers of P1 with given ramification over ∞ and sufficiently many fixed ramification points elsewhere. Degeneration of the target and judicious localization expresses such classes in terms of localization trees weighted by “top intersections” of tautological classes and genus 0 double Hurwitz numbers. This identity of generating series can be inverted, yielding a “combinatorialization” of top intersections of ψ-classes. As genus 0 double Hurwitz numbers with at most 3 parts over ∞ are well understood, we obtain Faber’s Intersection Number Conjecture for up to 3 parts, and an approach to the Conjecture in general (bypassing the Virasoro Conjecture). We also recover
other geometric results in a unified manner, including Looijenga’s theorem, the socle theorem for curves with rational tails, and the hyperelliptic locus in terms of κg−2.
Keywords: moduli space of curves, branched covers, Chow rings, enumerative geometry


1. Bertram, A., Cavalieri, R., Todorov, G.: Evaluating tautological classes using only Hurwitz numbers. Trans. Amer. Math. Soc. 360(11), 6103–6111 (2008)

2. Bryan, J., Pandharipande, R.: The local Gromov-Witten theory of curves. J. Amer. Math. Soc. 21(1), 101–136 (2008)

3. Cavalieri, R.: Generating functions for Hurwitz-Hodge integrals. Adv. Math. 218(5), 1419–1429 (2008)

4. 4. Deninger, C., Murre, J.: Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math. 422, 201–219 (1991)

5. Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A: On Hurwitz numbers and Hodge integrals. C. R. Acad. Sci. Paris Sér. I Math. 328, 1175–1180 (1999)

6. Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146(2), 297–327 (2001)

7. Faber, C.: A conjectural description of the tautological ring of the moduli space of curves. In: Faber, C., Looijenga, E. (eds.) Moduli of Curves and Abelian Varieties, pp. 109–129. Vieweg, Braunschweig (1999)

8. Faber, C.: Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians. In: Hulek, K., Catanese, F., Peters, C., Reid, M. (eds.) New Trends in Algebraic Geometry, pp. 93–109. London Math. Soc. Lecture Note Ser. 264. Cambridge Univ. Press, Cambridge (1999)

9. Faber, C.: MAPLE program for computing Hodge integrals. Personal communication. Available at http://math.stanford.edu/~vakil/programs/.

10. Faber, C.: Personal communication. (2006)

11. Faber, C., Pandharipande, R.: Relative maps and tautological classes. J. Eur. Math. Soc. 7(1) 13–49 (2005)

12. Fantechi, B., Pandharipande, R.: Stable maps and branch divisors. Compositio Math. 130(3), 345–364 (2002)

13. Gathmann, A.: Absolute and relative Gromov-Witten invariants of very ample hypersurfaces. Duke Math. J. 115(2), 171–203 (2002)

14. Getzler, E., Pandharipande, R.: Virasoro constraints and the Chern classes of the Hodge bundle. Nuclear Phys. B 530(3), 701–714 (1998)

15. Givental, A.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Notices 2001(23), 1265–1286 (2001)

16. Givental, A.: Gromov-Witten invariants and quantization of quadratic hamiltonians.Mosc. Math. J. 1(4), 551–568, 645 (2001)

17. Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Wiley, New York (1983)

18. Goulden, I.P., Jackson, D.M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. Amer. Math. Soc. 125(1), 51–60 (1997)

19. Goulden, I.P., Jackson, D.M., Vainshtein, A.: The number of ramified coverings of the sphere by the torus and surfaces of higher genera. Ann. Combin. 4(1), 27–46 (2000)

20. Goulden, I.P., Jackson, D.M., Vakil, R.: The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals. Proc. London Math. Soc. (3) 83(3), 563–581 (2001)

21. Goulden, I.P., Jackson, D.M., Vakil, R.: Towards the geometry of double Hurwitz numbers. Adv. Math. 198(1), 43–92 (2005)

22. Goulden, I.P., Jackson, D.M., Vakil, R.: A short proof of the λg-Conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves. J. Reine Angew. Math. 637, 175–191 (2009)

23. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135(2), 487–518 (1999)

24. Graber, T., Vakil, R.: On the tautological ring of Mg,n. In: Proceedings of the Seventh G¨okova Geometry-Topology Conference 2000, International Press, Somerville (2000)

25. Graber, T., Vakil, R.: Hodge integrals, Hurwitz numbers, and virtual localization. Compositio Math. 135(1), 25–36 (2003)

26. Graber, T., Vakil, R.: Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J. 130(1), 1–37 (2005)

27. Hori, K. et al.: Gromov-Witten Theory and Mirror Symmetry. Clay Math. Inst., Amer. Math. Soc. (2002)

28. Ionel, E.-N., Parker, T.H.: Relative Gromov-Witten invariants. Ann. of Math. (2) 157(1), 45–96 (2003)

29. Ionel, E.-N., Parker, T.H.: The symplectic sum formula for Gromov-Witten invariants. Ann. of Math. (2) 159(3), 935–1025 (2004)

30. Kazarian,M.E., Lando, S.K.: An algebro-geometric proof ofWitten’s conjecture. J. Amer. Math. Soc. 20, 1079-1089 (2007)

31. Lee, Y.-P., Pandharipande, R.: Frobenius Manifolds, Gromov-Witten Theory, and Virasoro Constraints. to appear

32. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds. Invent. Math. 145(1), 151–218 (2001)

33. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differential Geom. 57(3), 509–578 (2001)

34. Li, J.: A degeneration formula of GW-invariants. J. Differential Geom. 60(2), 199–293 (2002)

35. Liu, K., Xu, H.: New properties of the intersection numbers on moduli spaces of curves. Math. Res. Lett. 14(6), 1041–1054 (2007)

36. Liu, K., Xu, H.: A proof of the Faber intersection number conjecture. J. Differential Geom. 83(2), 313–335 (2009)

37. Liu, C.-C.M., Liu, K., Zhou, J.: A proof of a conjecture of Mari˜no-Vafa on Hodge integrals. J. Differential Geom. 65(2), 289–340 (2003)

38. Looijenga, E.: On the tautological ring of Mg. Invent. Math. 121(2), 411–419 (1995)

39. Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz numbers, and matrix models, I. In: Abramovich, D. et al. (eds.) Algebraic Geometry–Seattle 2005, pp. 325– 414. Amer. Math. Soc., Providence (2009)

40. Pandharipande, R.: Hodge integrals and degenerate contributions. Comm. Math. Phys. 208(2), 489–506 (1999)

41. Pandharipande, R.: Three questions in Gromov-Witten theory. In: Li, D. (ed.) Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 503–512, Higher Ed. Press, Beijing (2002)

42. Shadrin, S., Shapiro, M., Vainshtein, A.: On double Hurwitz numbers in genus 0. In: Proceedings of FPSAC’07. Tianjin, China (2007)

43. Shadrin, S., Zvonkine, D.: Changes of variables in ELSV-type formulas. Michigan Math. J. 55(1), 209–228 (2007)

44. Vakil, R.: The moduli space of curves and its tautological ring. Notices Amer. Math. Soc. 50(6), 647–658 (2003)

45. Vakil, R.: The moduli space of curves and Gromov-Witten theory. In: Thaddeus, M. et al. (eds.) Enumerative Invariants in Algebraic Geometry and String Theory, pp. 143C198. Springer, Berlin (2008)