Colin Adams^{1}, Reiko Shinjo^{2}, and Kokoro Tanaka^{3}

Colin.C.Adams@williams.edu

reiko@suou.waseda.jp

Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan

kotanaka@u-gakugei.ac.jp

Annals of Combinatorics 15 (4) pp.549-563 October, 2011

of each complementary face of the projection comes from the given sequence. In this paper, it is proved that the following infinite sequences are each universal for knots and links: (3, 5, 7, . . .), (2,

1. Eberhard, V.: Zur morphologie der polyeder. Teubner, Leipzig (1891)

2. Eliahou, S., Harary, F., Kauffman, L.: Lune-free knot graphs. J. Knot Theory Ramifications 17(1), 55–74 (2008)

3. Enns, T.C.: 4-valent graphs. J. Graph Theory 6(3), 255–281 (1982)

4. Grünbaum, B.: Some analogues of Eberhard’s theorem on convex polytopes. Israel J. Math. 6(4), 398–411 (1968)

5. Hoste, J., Thistlethwaite, M., Weeks, J.: The first 1,701,936 knots. Math. Intelligencer 20(4), 33–48 (1998)

6. Hotz, G.: Arkadenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe. Abh. Math. Sem. Univ. Hamburg 24, 132–148 (1960)

7. Jeong, D.: Realizations with a cut-through Eulerian circuit. Discrete Math. 137(1-3), 265–275 (1995)

8. Kauffman, L.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

9. Lee, J.H., Jin, G.T.: Link diagrams realizing prescribed subdiagram partitions. Kobe J. Math. 18(2), 199–202 (2001)

10. Murasugi, K.: Jones polynomials and classical conjectures in knot theory. Topology 26(2), 187–194 (1987)

11. Ozawa, M.: Edge number of knots and links. Preprint at arXiv:0705.4348. (2007)

12. Shinjo, R.: Complementary Regions of Projections of Spatial Graphs. In preparation.

13. Thistlethwaite, M.: A spanning tree expansion of the Jones polynomial. Topology 26(3), 297–309 (1987)

Get the Full Text of this paper.