Türker Bıyıkoglu^{1} and Yusuf Civan^{2}

turker.biyikoglu@isikun.edu.tr

ycivan@fef.sdu.edu.tr

Annals of Combinatorics 16 (1) pp.37-56 March, 2012

a family of inductively constructed graphs, the external extensions, related to an arbitrary graph, and determine the homotopy type of the independence complexes of external extensions of some graphs.

1. Barmak, J.A., Minian, E.G.: Minimal finite models. J. Homotopy Relat. Struct. 2(1), 127–140 (2007)

2. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218(1), 87–104 (2008)

3. Boulet, R., Fieux, E., Jouve, B.: Simplicial simple homotopy of flag complexes in terms of graphs. European J. Combin. 31(1), 161–176 (2010)

4. Brandst¨adt, A., Le, B.V., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1999)

5. Cohen, M.M.: A Course in Simple-Homotopy Theory. Springer-Verlag, New York (1973)

6. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math., 3(3), 163–174 (1981)

7. Dochtermann, A., Engström, A.: Algebraic properties of edge ideals via combinatorial topology. Electronic J. Combin. 16(2), #R2 (2009)

8. Ehrenborg, R., Hetyei, G.: The topology of the independence complex. European J. Combin. 27(6), 906–923 (2006)

9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

10. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Berlin (2008)

11. Marietti, M., Testa, D.: Cores of simplicial complexes. Discrete Comput. Geom. 40(3), 444–468 (2008)

12. Lov´asz, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978)

13. Villarreal, R.H.: Cohen-Macaulay graphs. Manuscripta Math. 66(3), 277–293 (1990)

14. Wachs, M.L.: Topology of matching, chessboard, and general bounded degree graph complexes. Algebra Universalis 49(4), 345–385 (2003)

Get the Full Text of this paper.