<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 5 Issue 3" %>
An Operator Calculus for the Askey-Wilson Operator
Mourad E.H.Ismail
Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700, USA
Annals of Combinatorics 5 (3) p.347-362 June, 2001
AMS Subject Classification: 05A40, 05A30, 33D45
We introduce a translation operator which commutes with the Askey-Wilson operator and develop the corresponding theory of polynomials of binomial type and the Sheffer classification.
Keywords: continuous q -Hermite polynomials, q-translation, q-calculus, q-shift-invariant operators, generating functions, operator calculus, Sheffer sequences, polynomials of q-binomial type, q-A type zero


1.  W.A. Al-Salam, Characterization theorems for orthogonal polynomials, In: Orthogonal Polynomials: Theory and Practice, P. Nevai, Ed., Kluwer, Dordrecht, 1989, pp. 1–24.

2.  W.A. Al-Salam, Characterization of the Rogers q-Hermite polynomials, Int. J. Math. Math. Sci. 18 (1995) 641–647.

3.  G.E. Andrews, R.A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.

4.  R. Askey and M.E.H. Ismail, A generalization of ultraspherical polynomials, In: Studies in Pure Mathematics, P. Erdős Ed., Birkhäuser, Basel, 1983, pp. 55–78.

5.  R. Askey and J. Wilson, Some basic hypergeometric polynomials that generalize Jacobi polynomials, Memoirs Amer. Math. Soc. Number 319 (1985).

6.  T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

7.  A. Erdélyi, W. Magnus, F. Oberhettinger, and G.F. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.

8.  R. Floreanini and L. Vinet, A model for the continuous q-ultraspherical polynomials, J. Math. Phys. 36 (1995) 3800-3813.

9.  G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

10.  E.C. Ihrig and M.E.H. Ismail, A q-umbral calculus, J. Math. Anal. Appl. 84 (1981) 178–207.

11.  M.E.H. Ismail and M. Rahman, An inverse to the Askey-Wilson operator, Rocky Mountain J. Math., submitted.

12.  M.E.H. Ismail and M. Rahman, Inverse operators, q-fractional integrals and q-Bernoulli polynomials, 114 (2001) 267–307.

13.  M.E.H. Ismail and D. Stanton, Addition theorems for q-exponential functions, In: q-Series from a Contemporary Perspective, Contemporary Mathematics, 254, M.E.H. Ismail and D. Stanton, Eds., Providence, 2000, pp. 235–245.

14.  M.E.H. Ismail and R. Zhang, Diagonalization of certain integral operators, Adv. Math. 109 (1994) 1–33.

15.  S.J. Joni and G.-C. Rota, Coalgebras and bialgebras, In: Combinatorics, Umbral Calculus and Hopf Algebras, Contemp. Math., Vol. 6, American Mathematical Society, Providence, 1982, pp. 1–47.

16.  R. Mullin and G.-C. Rota, On the foundations of combinatorial theory III: theory of binomial enumeration, In: Graph Theory and Its Applications, B. Harris, Ed., Academic Press, New York, 1970, pp. 168–213.

17.  E.D. Rainville, Special Functions, Macmillan, New York, 1960.

18.  S. Roman and G.-C. Rota, The umbral calculus, Adv. Math. 27 (1978) 95–188.

19.  G.-C. Rota, D. Kahaner, and A. Odlyzko, On the foundations of combinatorial theory VIII: finite operator calculus, J. Math. Anal. Appl. 42 (1973) 684–760.

20.  I.M. Sheffer, Some properties of polynomials of type zero, Duke Math. J. 5 (1939) 590–622.

21.  S.K. Suslov, Addition theorems for some q-exponential and trigonometric functions, Methods and Applications of Analysis 4 (1997) 11–32.

22.  G. Szegö, Orthogonal Polynomials, Fourth Edition, American Mathematical Society, Providence, 1975.

23.  A. Zygmund, Trigonometric Series, Second Edition, Vol. 2, Cambridge University Press, Cambridge, 1959.