<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 5 Issue 3" %>
Directed Graphs and the Combinatorics of the Polynomial Representations of
Miguel A.M谷ndez
IVIC, Departamento de Matematica, and UCV, Facultad de Ciencias, Departamento de Matematica, Caracas, Venezuela
mmendez@cauchy.ivic.ve
Annals of Combinatorics 5 (3) p.459-478 September, 2001
AMS Subject Classification: 05E15
Abstract:
Using dierected graphs, we present a combinatorial model for the polynomial matrices corresponding to representations of the general linear groups. In doing so, we obtain a very simple combinatorial rule to multiply basic elements of the Schur algebra.
Keywords: Schur algebras, MacMahon master theorem, combinatorial species

References:

1.  F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of Mathematics and Its Applications 67, Cambridge University Press, 1998.

2.  P. Cartier and D. Foata, Problèmes Combinatoires de Commutation et Réarrangements, Lecture Notes in Mathematics 85, Springer-Verlag, Berlin, 1969.

3.  W.Y.C. Chen and J.D. Louck, The combinatorics of a class of representation functions, Adv. Math. 140 (1998) 207每236.

4.  J.A. Green, On certain subalgebras of the Schur algebra, J. Algebra 131 (1990) 265每280.

5.  J.A. Green, Polynomial Representations of GLn, Lecture Notes in Mathematics 830, Springer-Verlag, Berlin, 1980.

6.  A. Joyal, Une théorie combinatoire des séries formelles, Adv. Math. 42 (1981) 1每82.

7.  S. Martin, Schur Algebras and Representation Theory, Cambidge Tracts in Mathematics 112, Cambridge University Press, 1993.

8.  M. Méndez, Species on digraphs, Adv. Math. 123 (1996) 243每275.

9.  M. Méndez, Cycle index series of structures over digraphs, Discrete Math. 224 (2000) 165每 192.

10.  J.D. Louck, MacMahon*s master theorem, double tableau polynomials, and representations of groups, Adv. Appl. Math. 17 (1996) 143每168.