<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume9 Issue1" %>
An Analogue of Nakayama's Conjecture for Johnson Schemes
Osamu Shimabukuro
Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan
shima@math.kyushu-u.ac.jp
Annals of Combinatorics 9 (1) p.101-115 March, 2005
AMS Subject Classification: 05E30
Abstract:
Nakayama's Conjecture is one of the most famous theorems for representation theory of symmetric groups. Two general irreducible characters of a symmetric group belong to the same p-block if and only if the p-cores of the young diagrams corresponding to them are the same. The conjecture was first proven in 1947 by Brauer and Robinson. We consider an analogue of Nakayama's Conjecture for Johnson scheme.
Keywords: Johnson scheme, Young diagrams, representations

References:

1. E. Bannai and T. Ito, Algebraic Combinatorics I, Association Schemes, Benjamin, 1984.

2. P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994.

3. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).

4. P. Delsarte, Properties and applications of the recurrence F(i+1;k+1;n+1) = qk+1F(i;k+ 1;n)–qkF(i, k, n), SIAM J.Appl. Math. 31 (2) (1976) 262--270.

5. A. Hanaki, Block decomposition of standard modules, 2002, preprint, http://math.shinshu-u.ac.jp/%7Ehanaki/notes.html.

6. A. Hanaki, The number of irreducible modular representation of Johnson scheme (Japanese), preprint.

7. G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison - Wesley, 1981.

8. H. Nagao and Y. Tsushima, Representations of Finite Groups (Japanese), Shoukabou, 1987.