<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 9 Issue 3" %>
On Symmetry and Positivity for Domino and Ribbon Tableaux
Thomas Lam
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
thomasl@math.mit.edu
Annals of Combinatorics 9 (3) p.293-300 September, 2005
AMS Subject Classification: 05E10, 05E05
Abstract:
Inspired by the spin-inversion statistic of Schilling, Shimozono and White and Haglund et al., we relate the symmetry of ribbon functions to a result of van Leeuwen, and also describe the multiplication of a domino function by a Schur function.
Keywords: ribbon tableaux, domino tableaux, symmetric functions

References:

1. C. Carré and B. Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts, J. Algebraic Combin. 4 (1995) 201--231.

2. J. Haglund, M. Haiman, N. Loehr, J.B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2) (2005) 195--232.

3. T. Lam, Ribbon Schur operators, preprint, 2004, math.CO/0409463.

4. T. Lam, Ribbon tableaux and the Heisenberg algebra, Math. Z., to appear.

5. B. Leclerc and J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, In: Combinatorial Methods in Representation Theory, Advanced Studies in Pure Mathematics 28, (2000) pp. 155--220.

6. A. Lascoux, B. Leclerc, and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood symmetric functions, quantum affine algebras, and unipotent varieties, J. Math. Phys. 38 (3) (1997) 1041--1068.

7. M. van Leeuwen, Spin-preserving Knuth correspondences for ribbon tableaux, Electron. J. Combin. 12 (1) (2005) R10.

8. M. van Leeuwen, Edge sequences, ribbon tableaux, and an action of affine permutations, Europ. J. Combin. 20 (1999) 179--195.

9. A. Schilling, M. Shimozono, and D.E. White, Branching formula for q-Littlewood- Richardson coefficients, Adv. Appl. Math. 30 (2003) 258--272.

10. J. Stembridge, A concise proof of the Littlewood-Richardson rule, Electron. J. Combin. 9 (2002) N5.