<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 9 Issue 4" %>
Higher Order Peak Algebras
D. Krob1 and J.-Y. Thibon2
1Laboratoire d'Informatique, École Polytechnique, 91128 Palaiseau, France
2Institut Gaspard Monge, Université Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur- Marne, 77454 Marne-la-Vallée cedex 2, France
Annals of Combinatorics 9 (4) p.411-430 December, 2005
AMS Subject Classification: 05E05, 16W30
Using the theory of noncommutative symmetric functions, we introduce the higher order peak algebras (Sym(N))N≥1, a sequence of graded Hopf algebras which contain the descent algebra and the usual peak algebra as initial cases (N = 1 and N = 2). We compute their Hilbert series, introduce and study several combinatorial bases, and establish various algebraic identities related to the multisection of formal power series with noncommutative coefficients.

Keywords: Noncommutative symmetric functions, descent algebras, peak algebras


1. M. Aguiar, N. Bergeron, and K. Nyman, The peak algebra and the descent algebras of types B and D, Trans. Amer. Math. Soc. 356 (2004) 2781--2824.

2. N. Bergeron, F. Hivert and J.-Y. Thibon, The peak algebra and the Hecke-Clifford algebras at q=0, J. Combin. Theory Ser. A 117 (2004) 1--19.

3. G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (5) (2002) 671--717.

4. G. Duchamp, A. Klyachko, D. Krob and J.-Y. Thibon, Noncommutative symmetric functions III: Deformations of Cauchy and convolutive algebras, Discrete Math. Theoret. Comput. Sci. 1 (1997) 159--216.

5. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995) 218--348.

6. D. Knutson, Λ-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math. 308, Springer-Verlag, Berlin-New York, 1973.

7. D. Krob, B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions II: Trans\-for\-ma\-tions of alphabets, Internat. J. Algebra. Comput. 7 (2) (1997) 181--264.

8. D. Krob and J.-Y. Thibon, Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q = 0, J. Algebraic Combin. 6 (1997) 339--397.

9. D. Krob and J.-Y. Thibon, Noncommutative symmetric functions V: A degenerate version of Uq glN, Internat. J. Algebra. Comput. 9 (3,4) (1999) 405--430.

10. A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys. 181 (1996) 205--263.

11. A. Lascoux and M.P. Schützenberger, Formulaire Raisonné de Fonctions Symétriques, Université Paris 7, 1985.

12. P.A. MacMahon, Combinatory Analysis, Cambridge University Press, 1915, 1916; reprinted by Chelsea, New York, 1960.

13. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., 2nd Ed., Oxford University Press, Oxford, 1994.

14. K.L. Nyman, The peak algebra of symmetric group, J. Algebraic Combin. 17 (2003) 309--322.

15. L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (2) (1976) 255--268.

16. M. Schocker, The peak algebra revisited, Adv. Math. 192 (2005) 259--309.

17. J. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997) 763--788.