Annals of Combinatorics 3 (1999) 277-286


Enumeration of the Self-avoiding Polygons on a Lattice by the Schwinger--Dyson Equations

P. Butera and M. Comi

Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, Università di Milano, 16 Via Celoria, 20133 Milano, Italy
{butera, comi}@mi.infn.it

Received November 1, 1998

AMS Subject Classification: 05A15, 05C38, 82B41

Abstract. We show how to compute the generating function of the self-avoiding polygons on a lattice by using the statistical mechanics Schwinger--Dyson equations for the correlation functions of the N-vector spin model on that lattice.

Keywords: lattice spin models, self-avoiding lattice walks, Schwinger--Dyson equations, static critical phenomena


References

1.  V.L. Berezinskii, Destruction of long range order in one dimensional and two dimensional systems having a continuous symmetry group, I Classical systems, ZETF 59 (1970) 907; Sov. Phys. JEPT 32 (1971) 493, in English.

2.  P. Butera, R. Cabassi, M. Comi, and G. Marchesini, High temperature expansion via Schwinger--Dyson equations: The planar rotator model on a triangular lattice, Comp. Phys. Commun. 44 (1987) 143–156.

3.  P. Butera and M. Comi, High temperature series for the RPN-1 lattice spin model (generalized Maier--Saupe model of nematic liquid crystals) in two space dimensions and with general spin dimensionality N, Phys. Rev. B 46 (1992) 11141–11144.

4.  P. Butera and M. Comi, A quantitative study of the Kosterlitz--Thouless phase transition in a system of two-dimensional plane rotators(XY model) by high-temperature expansions through β20, Phys. Rev. B 47 (1993) 11969–11979.

5.  P. Butera and M. Comi, High temperature study of the Kosterlitz--Thouless phase transition in the XY model on the triangular lattice, Phys. Rev. B 50 (1994) 3052–3057.

6.  P. Butera and M. Comi, N-vector spin models on the sc and bcc lattices: A study of the critical behavior by HT series extended to order 21, Phys. Rev. B 56 (1997) 8212–8240.

7.  P. Butera and M. Comi, work in progress.

8.  P. Butera, M. Comi, and A.J. Guttmann, Critical exponents of the three-dimensional classical plane rotator model on the sc lattice from a high temperature series analysis, Phys. Rev. B 48 (1993) 13987–13990.

9.  P. Butera, M. Comi, and G. Marchesini, A new algorithm for high temperature series: The planar rotator model, Phys. Rev. B 33 (1986) 4725–4733.

10.  P. Butera, M. Comi, and G. Marchesini, Lattice O(N) non linear sigma model: Scaling in high temperature expansion, Nucl. Phys. B 300 (1988) 1–30.

11.  P. Butera, M. Comi, and G. Marchesini, Classical O(N) Heisenberg model: Extended high-temperature series for two, three and four dimensions, Phys. Rev. B {\bf 41} (1990) 11494–11507.

12.  A. Conway, I.G. Enting, and A.J. Guttmann, Algebraic techniques for enumerating self-avoiding walks on the square lattice, J. Phys. A 26 (1993) 1519–1534.

13.  G.F. De Angelis, G. De Falco, and F. Guerra, Lattice gauge theories in the strong coupling regime, Lett. Nuovo Cim. 19 (1977) 55–58.

14.  P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method, Phys. Lett. A 38 (1972) 339–340.

15.  C. Domb and M.S. Green, Eds., Phase Transitions and Critical Phenomena, Vol. 3, New York, Academic Press, 1972.

16.  T. Eguchi, Strings in U(N) lattice gauge theory, Phys. Lett. 87B (1979) 91–96.

17.  S.R. Finch, Several constants arising in statistical mechanics, Ann. Combin. 3 (1999) 323–335.

18.  M.E. Fisher and K.G. Wilson, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240–243.

19.  D. Foerster, Yang-Mills theory --- a string theory in disguise, Phys. Lett. 87B (1979) 87–90.

20.  F. Guerra, R. Marra, and G. Immirzi, Strong coupling expansions for lattice Yang--Mills fields, Lett. Nuovo Cim. 23 (1978) 237–240.

21.  J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (1974) 1046.

22.  J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181.

23.  G. Parisi, Cargese 1973 Lecture Notes, unpublished; Field theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23 (1980) 49.

24.  J.K. Percus, Combinatorial Methods, Springer, New York, 1971.

25.  H.E. Stanley, Dependence of critical properties on the dimensionality of spins, Phys. Rev. Lett. 20 (1968) 589–592.

26.  M.F. Sykes, D.S. McKenzie, M.G. Watts, and J.L. Martin, The number of self-avoiding rings on a lattice, J. Phys. A 5 (1972) 661–665.

27.  H.N.V. Temperley, Graph Theory and Applications, Chichester, Ellis Horwood, 1981.

28.  A. Wakefield, Oxford University Ph.D. Thesis, 1950.

29.  D. Weingarten, String equations for lattice gauge theories, Phys. Lett. 87B (1979) 97–100.

30.  A. Zweig, Schwinger--Dyson Gleichungen im n-vektor modell, Bern Universitaet Diplom Thesis, 1984.


Get the DVI| PS | PDF file of this abstract.

back