Annals of Combinatorics 3 (1999) 323-335


Several Constants Arising in Statistical Mechanics

Steven R. Finch

MathSoft Inc., 101 Main Street, Cambridge, MA 02142, USA
sfinch@mathsoft.com

Received September 26, 1998

AMS Subject Classification: 05A15, 05A16, 05B50, 11Y60, 82B20, 82B41

Abstract. This is a brief survey of certain constants associated with random lattice models, including self-avoiding walks, polyominoes, the Lenz--Ising model, monomers and dimers, ice models, hard squares and hexagons, and percolation models.

Keywords: random lattice models, self-avoiding walks, polyominoes, Ising model, monomers, dimers, ice models, hard squares, hard hexagons, percolation


References

1.  S.E. Alm, Upper bounds for the connective constant of self-avoiding walks, Combin. Prob. Comput. 2 (1993) 115–136.

2.  G.E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, In: Proc. Symp. Applied Math., Vol. 46, S.A. Burr, Eds., Amer. Math. Soc., 1992, pp. 21–34.

3.  R.J. Baxter, Dimers on a rectangular lattice, J. Math. Phys. 9 (1968) 650–654.

4.  R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982.

5.  R.J. Baxter, Planar lattice gases with nearest-neighbor exclusion, Ann. Combin. 3 (1999) 191–203.

6.  R.J. Baxter, I.G. Enting, and S.K. Tsang, Hard-square lattice gas, J. Stat. Phys. 22 (1980) 465–489.

7.  R.J. Baxter, H.N.V. Temperley, and S.E. Ashley, Triangular Potts model at its transition temperature, and related models, Proc. Royal Soc. London A 358 (1978) 535–559.

8.  I. Beichl and F. Sullivan, Approximating the permanent via importance sampling with application to the dimer covering problem, J. Comput. Phys., submitted.

9.  H.W.J. Blöte, E. Luijten, and J.R. Heringa, Ising universality in three dimensions: A Monte Carlo study, J. Phys. Math. A 28 (1995) 6289–6313.

10.  P. Butera and M. Comi, N-vector spin models on the simple-cubic and the body-centered-cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order 21, Phys. Rev. B 56 (1997) 8212–8240.

11.  N.J. Calkin and H.S. Wilf, The number of independent sets in a grid graph, SIAM J. Discrete Math. 11 (1998) 54–60.

12.  S. Caracciolo, M.S. Causo, and A. Pelissetto, Monte Carlo results for three-dimensional self-avoiding walks, Nucl. Phys. Proc. Suppl. 63 (1998) 652–654.

13.  B.A. Cipra, An introduction to the Ising model, Amer. Math. Monthly 94 (1987) 937–959.

14.  M. Ciucu, An improved upper bound for the three-dimensional dimer problem, Duke Math. J. 94 (1998) 1–11.

15.  A.R. Conway and A.J. Guttman, Lower bound on the connective constant for square lattice self-avoiding walks, J. Phys. A. 26 (1993) 3719–3724.

16.  A.R. Conway and A.J. Guttmann, On two-dimensional percolation, J. Phys. A 28 (1995) 891–904.

17.  J.W. Essam, Percolation and cluster size, In: Phase Transitions and Critical Phenomena, Vol. II, C. Domb and M.S. Green, Eds., Academic Press, 1972, pp. 197–270.

18.  S.R. Finch, Favorite Mathematical Constants, MathSoft Inc., website URL http://www.mathsoft.com/asolve/constant/constant.html, 1998.

19.  S. Gartenhaus and W.S. McCullough, Higher order corrections for the quadratic Ising lattice susceptibility at criticality, Phys. Rev. B 38 (1988) 11688–11703.

20.  M. Gofman, J. Adler, A. Aharony, A.B. Harris, and D. Stauffer, Series and Monte Carlo study of high-dimensional Ising models, J. Stat. Phys. 71 (1993) 1221–1230.

21.  A.G. Guttmann, On the number of lattice animals embeddable in the square lattice, J. Phys. A 15 (1982) 1987–1990.

22.  A.J. Guttmann and I.G. Enting, The high-temperature specific heat exponent of the 3D Ising model, J. Phys. A 27 (1994) 8007–8010.

23.  T. Hara, G. Slade, and A.D. Sokal, New lower bounds on the self-avoiding-walk connective constant, J. Stat. Phys. 72 (1993) 479-517; 78 (1995) 1187–1188, erratum.

24.  A.B. Harris and Y. Meir, Recursive enumeration of clusters in general dimension on hypercubic lattices, Phys. Rev. A 36 (1987) 1840–1848.

25.  M. Heise, Upper and lower bounds for the partition function of lattice models, Physica A 157 (1989) 983–999.

26.  J.J. Henry, Private communication, 1997-1998.

27.  B.D. Hughes, Random Walks and Random Environments, Vols. 1 and 2, Oxford University Press, 1996.

28.  G.S. Joyce, On the hard hexagon model and the theory of modular functions, Phil. Trans. Royal Soc. London A 325 (1988) 643–702.

29.  D.A. Klarner and R.L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canad. J. Math. 25 (1973) 585–602.

30.  M. Larsen, The problem of kings, Elec. J. Combin. 2 (1995).

31.  B. Li, N. Madras, and A.D. Sokal, Critical exponents, hyperscaling and universal amplitude ratios for two- and three-dimensional self-avoiding walks, J. Stat. Phys. 80 (1995) 661–754.

32.  Lundow and Per H\aa kan, Computation of matching polynomials and the number of 1-factors in polygraphs, Department of Mathematics, Umeaa University, Preprint, 12-1996, 1996.

33.  N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser, 1993.

34.  B.D. McKay, Private communication, 1996.

35.  M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, In: Proc. Third Annual ACM-SIAM Symposium on Discrete Algorithms, Orlando, Florida, 1992, pp. 138-145; Algorithmica 16 (1996) 402–414.

36.  C. Münkel, D.W. Heermann, J. Adler, M. Gofman, and D. Stauffer, The dynamical critical exponent of the two-, three- and five-dimensional kinetic Ising model, Physica A 193 (1993) 540–552.

37.  J. Noonan, New upper bounds for the connective constants of self-avoiding walks, J. Stat. Phys. 91 (1998) 871–888.

38.  J. Noonan and D. Zeilberger, The Goulden--Jackson cluster method: Extensions, applications and implementations, J. Difference Eq. Appl., to appear.

39.  J.F. Nagle, Lattice statistics of hydrogen bonded crystals: I. The residual entropy of ice, J. Math. Phys. 7 (1966) 1484–1491.

40.  J.K. Percus, Combinatorial Methods, Springer-Verlag, 1971.

41.  V.B. Priezzhev, The statistics of dimers on a three-dimensional lattice, II. An improved lower bound, J. Stat. Phys. 26 (1981) 829–837.

42.  B.M.I. Rands and D.J.A. Welsh, Animals, trees and renewal sequences, IMA J. Appl. Math. 27 (1981) 1–17.

43.  D.H. Redelmeier, Counting polyominoes: Yet another attack, Discrete Math. 36 (1981) 191–203.

44.  A. Schrijver, Counting 1-factors in regular bipartite graphs, J. Combin. Theory B 72 (1998) 122-135; MR 82a:15004.

45.  R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

46.  D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., Taylor and Francis, 1992.

47.  H.N.V. Temperley and E.H. Lieb, Relations between the ``percolation'' and ``colouring'' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the `percolation' problem, Proc. Royal Soc. London A 322 (1971) 251–280.

48.  J. van den Berg and A. Ermakov, A new lower bound for the critical probability of site percolation on the square lattice, Random Structures and Algorithms 8 (1996) 199–212.

49.  S.G. Whittington and C.E. Soteros, Lattice animals: Rigorous results and wild guesses, In: Disorder in Physical Systems: A Volume in Honour of J. M. Hammersley, G.R. Grimmett and D.J.A. Welsh, Eds., Oxford University Press, 1990.

50.  J.C. Wierman, Substitution method critical probability bounds for the square lattice site percolation model, Combin. Prob. Comput. 4 (1995) 181–188.

51.  H.S. Wilf, The problem of kings, Elec. J. Combin. 2 (1995).

52.  T.T. Wu, B.M. McCoy, C.A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13 (1976) 316–374.

53.  R.M. Ziff, Spanning probability in 2D percolation, Phys. Rev. Lett. 69 (1992) 2670–2673.

54.  R.M. Ziff, S.R. Finch, and V. Adamchik, Universality of finite-size corrections to the number of critical percolation clusters, Phys. Rev. Lett. 79 (1997) 3447-3450.

55.  P. Zimmermann, Private communication, 1996.


Get the DVI| PS | PDF file of this abstract.

back