## Annals of Combinatorics 3 (1999) 357-384A Pattern Theorem for Lattice Clusters Neal Madras Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto,Ontario, M3J 1P3, Canada
Received Feburary 5, 1999
n, up to translation. The results also apply to weighted sums, and in particular, we can take a to be the probability that the percolation cluster containing the origin consists of exactly _{n}n sites. Another consequence is strict inequality of connective constants for sublattices and for certain subclasses of clusters.
References
1.
E.A. Bender, Z.-C. Gao, and L.B. Richmond,
2.
J.W.S. Cassels, 3.
A.R. Conway, R. Brak, and A.J. Guttmann, 4.
G. Grimmett, 5.
J.M. Hammersley and K.W. Morton, 6.
T. Hara and G. Slade, 7.
E.J. Janse van Rensburg and N. Madras, 8.
E.J. Janse van Rensburg, E. Orlandini, D.W. Sumners,
M.C. Tesi, and S.G. Whittington, 9.
H. Kesten, 10.
D.A. Klarner, 11.
D.J. Klein, 12.
N. Madras, 13.
N. Madras and G. Slade, 14.
N. Madras, C.E. Soteros, and S.G. Whittington,
15.
N. Madras, C.E. Soteros, S.G. Whittington, J.L. Martin,
M.F. Sykes, S. Flesia, and D.S. Gaunt, 16.
C.E. Soteros and S.G. Whittington, 17.
E. Swierczak and A.J. Guttmann, 18.
C. Vanderzande, |