Annals of Combinatorics 3 (1999) 385-415


Symmetric and Nonsymmetric Macdonald Polynomials

Dan Marshall

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia
danm@maths.mu.oz.au

Received December 2, 1998

AMS Subject Classification: 33D80

Abstract. The symmetric Macdonald polynomials may be constructed from the nonsymmetric Macdonald polynomials. This allows us to develop the theory of the symmetric Macdonald polynomials by first developing the theory of their nonsymmetric counterparts. In taking this approach we are able to obtain new results as well as simpler and more accessible derivations of a number of the known fundamental properties of both kinds of polynomials.

Keywords: Macdonald polynomials, q-series, Hecke algebras


References

1.  G.E. Andrews, Problems and prospects for basic hypergeometric functions, In: Theory and Applications of Special Functions, R. Askey, Ed., Academic Press, New York, 1977, pp. 191–224.

2.  R. Askey, Some basic hypergeometric extensions of integrals of Selbergand Andrews , SIAM J. Math. Analysis 11 (1980) 938–951.

3.  T.H. Baker and P.J. Forrester, Isomorphisms of type A-affine Hecke algebras and multivariable orthogonal polynomials, Pacific J. Math, submitted.

4.  T.H. Baker and P.J. Forrester, Multivariable Al-Salam and Carlitz polynomials associated with the type a q-dunkl kernel, Math. Nachr., in press.

5.  T.H. Baker and P.J. Forrester, A q-analogue of the type A Dunkl operator and integral kernel, Int. Math. Res. Not. 14 (1997) 667–686.

6.  T.H. Baker and P.J. Forrester, Symmetric Jack polynomials from nonsymmetric theory, q-alg/9707001, 1997, preprint.

7.  T.H. Baker and P.J. Forrester, Generalizations of the q-Morris constant term identity, J. Combin. Theory Ser. A 81 (1998) 69–87.

8.  T.H.~Baker, C.F. Dunkl, and P.J. Forrester, Polynomial eigenfunctions of the Colegero--Sutherland--Moser models with exchange terms, In: Proc. CRM Workshop on {Colegero}-{Sutherland}-{Moser} models, to appear.

9.  D. Bressoud and D. Zeilberger, A proof of Andrews' q-Dyson conjecture, Discrete Math. 54 (1985) 201–224.

10.  I. Cherednik, A unification of Kniznik--Zamolodchikov and Dunkl operators via affine Hecke algebras, Inv. Math. 106 (1991) 411–432.

11.  I. Cherednik, Integration of quantum many-body problems by affine Knizhnik--Zamolodchikov equations, Commum. Math. Phys. 106 (1994) 65–95.

12.  I. Cherednik, Nonsymmetric Macdonald polynomials, Int. Math. Res. Not. 10 (1995) 483–515.

13.  G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J. Thibon, Euler--Poincarè characteristic and polynomial representations of Iwahori--Hecke algebras, RIMS 31 (1995) 179–201.

14.  C.F. Dunkl, Intertwining operators and polynomials associated with the symmetric group, Monat. Math., to appear.

15.  L.~Habsieger, Une q-intègrale de Selberg-Askey, SIAM J. Math. Analysis 19 (1988) 1475–1489.

16.  K.W.J. Kadell, A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Analysis 19 (1988) 969–986.

17.  J. Kaneko, q-Selberg integrals and Macdonald polynomials, Ann. Sci. Èc. Norm. Sup. 4e sèrie 29 (1996) 1086–1110.

18.  J. Kaneko, Constant term identities of Forrester--Zeilberger--Cooper, Discrete Math. 173 (1997) 79–90.

19.  A.N. Kirillov and M. Noumi, Affine Hecke algebras and raising operators for the Macdonald polynomials, Duke Math. J. 93 (1998) 1–39.

20.  F. Knop and S. Sahi, Difference equations and symmetric polynomials defined by their zeros, Int. Math. Res. Not. 10 (1996) 473–486.

21.  F. Knop and S. Sahi, A recursion and combinatorial formula for the Jack polynomials, Inv. Math. 128 (1996) 9–22.

22.  H. Konno, Relativistic {Calogero--Sutherland} model: Spin generalization, quantum affine symmetry and dynamical correlation functions, Nucl. Phys. B 473 (1996) 579–601.

23.  I.G. Macdonald, Notes on Shubert Polynomials, Lacim, Montreal 1991.

24.  I.G. Macdonald, Hall Polynomials and Symmetric Functions, Oxford University Press, Oxford, 2nd Ed., 1995.

25.  I.G. Macdonald, Affine {Hecke} algebras and orthogonal polynomials, In: Sèminaire Bourbaki, 47ème annèe:797, 1994-5.

26.  K. Mimachi and M. Noumi, A reproducing kernel for nonsymmetric {Macdonald} polynomials, Duke Math. J. 91 (1998) 621–634.

27.  W.G. Morris, Constant term identities for finite and affine root systems, conjectures and theorems, Ph.D. thesis, University of Wisconsin, 1982.

28.  A. Okounkov, Binomial formula for {Macdonald} polynomials, Math. Res. Lett. 4 (1997) 533–553.

29.  S. Sahi, A new scalar product for the nonsymmetric {Jack} polynomials, Int. Math. Res. Not. 20 (1996) 997–1004.

30.  J.R. Stembridge, A short proof of {Macdonald's} conjecture for the root systems of type A, Proc. Amer. Math. Soc. 102 (1988) 777–785.


Get the DVI| PS | PDF file of this abstract.

back