<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 4 Issue 1" %>
Factorization Properties of the q-Specialization of Schubert Polynomials
Vincent Prosper
Gaspard Monge Institute, University of Marne-la-Vallée, 77454 Marne-la-Vallée Cedex 2, France
Annals of Combinatorics 4 (1) p.91-107 March, 2000
AMS Subject Classification:05E10, 14M15
Schubert polynomials are a linear basis of the ring of polynomials in x = {x1,...,xn} with coefficients in a second set of variables y = {y1, y2, ...}. Two specializations of y are classical: y = {0, 1, 2, ...} or {1, q, q2, ...}, and contain as subfamilies factorial and q-factorial Schur functions. We give here a factorization property when one specializes both x and y into successive powers of q. It involves describing the specialization to x = 1, q, q2, ..., y = 0, which we study through a generating function. The whole description is given by introducing a double statistics on tableaux.
Keywords: Schubert polynomials, factorial and q-factorial Schur functions


1. N.I. Bernstein, M.I. Gelfand, and S.I. Gelfand, Schubert cells and cohomology of the spaces G/P , Uspekhi. Mat. Nauk 28 (1973) 3每26.

2. L.C. Biedenharn and J.D. Louck, A new class of symmetric polynomials defined in terms of tableaux , Adv. Appl. Math. 9 (1988) 447每464.

3. W.Y.C. Chen and J.D. Louck, Interpolation for symmetric functions , Adv. Math. 117 (1996) 147每156.

4. M. Demazure, Désingularisation des variétés de Schubert , Annales E.N.S. 6 (1974) 163每172.

5. S. Fomin and R. Stanley, Schubert polynomials and the NilCoxeter algebra , Adv. Math. 103 (1994) 196每207.

6. W. Fulton, Flags , Schubert polynomials , degeneracy loci and determinantal formulas , Duke Math. J. 65 (1991) 381每420.

7. A. Kohnert, Weintrauben , polynome , tableaux . Bayreuther Math. Schr. 38 (1991) 1每97.

8. A. Kohnert and S. Veigneau, Using Schubert basis to compute with multivariate polynomials , Adv. Appl. Math. 19 (1997) 45每60.

9. A. Lascoux, Classes de Chern des variétés de drapeaux , C.R. Acad. Sci. Paris 295 (1982) 393每398.

10. A. Lascoux, Polynômes de Schubert , une approche historique , Discrete Math. 139 (1992) 303每317.

11. A. Lascoux and V. Prosper, µ- EC , a MuPAD Environment for Combinatorics , release 1.0, 1998. http://phalanstere.univ-mlv.fr/~muec .

12. A. Lascoux and M.-P. Schützenberger, Interpolation de Newton à plusieurs variables , In: Seminaire d'Algebre Paul Dubreil et Marie Paule Malliavin, M. Malliavin, Ed., Lecture Notes in Mathematics, Vol. 1146, Springer-Verlag, 1985, pp. 161每175.

13. A. Lascoux and M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule , Lett. Math. Phys. 10 (1985) 111每124.

14. I.G. Macdonald, Notes on Schubert Polynomials , Vol. 6, Publ. LACIM, Montr´eal, 1991.

15. A. Molev, Factorial Schur functions and super Capelli identities , In: Kirillov's Seminar on Representation Theory, G.I. Olshanski, Ed., AMS Transl., Vol. 181, American Mathematical Society, Providence, RI, 1998.

16. J. Morse, Recursion and explicit formulas for particular n-variable Sahi求Knop and Macdonald polynomials , J. of Combin. Theory, Ser. A, Submitted.

17. V. Prosper, Action of divided differences on modified powers , Adv. Appl. Math., 1999.

18. V. Prosper, Combinatoire des polynômes multivariés , Ph.D. Thesis, University of Marne-la- Vallée, France, 1999, IGM99-2. ftp://schubert.univ-mlv.fr/pub/thesis/Vicent.Prosper/vpthesis.html.

19. R. Stanley, Enumerative Combinatorics , Vol. 1, Wadsworth & Brooks, Pacific Grove, CA, 1986.

20. J.-Y. Thibon and S. Veigneau, Using ACE , an algebraic combinatorics environment for MAPLE , In: Proceedings of the 8th Conference on Formal Power Series and Algebraic Combinatorics, University of Minnesota, 1996, pp. 461每468. http://phalanstere.univ-mlv.fr/~ace.

21. S. Veigneau, Calcul symbolique et calcul distribué en combinatoire algébrique , Ph.D. Thesis, University of Marne-la-Vallée, France, 1996, IGM96-39.