<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 5 Issue 2" %>
Cycle Indicators and Special Functions
Leetsch C. Hsu1 and Peter Jau-Shyong Shiue2
1Department of Mathematics, Dalian University of Technology, Dalian 116024, China
2Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154-4020, USA
Annals of Combinatorics 5 (2) p.179-196 June, 2001
AMS Subject Classification: 05A15, 05A17, 11B37, 11B39, 11B83, 12E10, 33C25
It is shown that a class of special functions (involving Sheffer-type polynomials and Gegenbauer-Humbert-type polynomials) could have cycle indicator representations and some recurrence relations. This implies the conclusion that classical special functions with simple logarithms of generating functions can be classified this way. This paper is mainly devoted to establish various relations and identities for special functions and remarkable number sequences.
Keywords: cycle indicator, -representation, -representablity


1.  G.E. Andrews, The Theory of Partitions, Addison-Wesley Publishing Company, London- Amsterdam-Sydney-Tokyo, 1976.

2.  T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.

3.  R.P. Boas and R.C. Buck, Polynomial Expansions of Analytic Functions, Springer-Verlag, New York, 1964.

4.  W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci. 117 (1993) 113每129.

5.  L. Comtet, Advanced Combinatorics, Dordrecht, 1974.

6.  P. Filipponi and A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, In: Applications of Fibonacci Numbers. Vol. 4, G.E. Bergum et al., Eds., 1991, pp. 99每108.

7.  I.M. Gessel, Combinatorial proof of congruences, In: Enumeration and Design, D.M. Jackson et al., Eds., Academic Press, Toronto-New York, 1984, pp. 157每167.

8.  H.W. Gould, Inverse series relations and other expansions involving Humbert polynomial, Duke Math. J. 22 (1965) 697每711.

9.  F. Harary and E.M. Palmer, Graphical Enumeration, Academic Press, New York, 1973.

10.  A.F. Horadam and J.M. Mahon, Convolution for Pell polynomials, In: Fibonacci Numbers and Their Applications, Vol. 3, A.N. Pillipponi et al., Eds., 1986, pp. 55每80.

11.  L.C. Hsu, On Stirling-type pairs and extended Gegenbauer-Humbert-Fibonacci polynomials, In: Applications of Fibonacci Numbers, Vol. 5, G.E. Bergum et al., Eds., Kluwer Acad. Publishers, Holland, 1993, pp. 367每377.

12.  L.C. Hsu and P.J.-S. Shiue, Representation of various special polynomials via the cycle indicator of symmetric group, Combinatorics and Graph Theory'95, Proc. Intern. Conf. on Comb. (Hefei, China), World Scientific, Singapore-New Jersey-London-Hong Kong, Vol. 1, 1995, pp. 157每162.

13.  L.C. Hsu, Certain asymptotic expansions for the Laguerre polynomials and Charlier polynomials, Approximation Theory and Its Application 11 (1995) 94每104.

14.  D.E. Knuth and E.A. Bender, Enumeration of plane partitions, J. Combin. Theory 13 (1972) 40每54.

15.  J. Konvalina, A generalization of Waring*s formula, J. Combin. Theory Ser. A 75 (1996) 281每294.

16.  P.A. MacMahon, Combinatory Analysis, Vols. I, II, Cambridge Univ. Press, 1916, reprinted by Chelsea, New York, 1960.

17.  W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd Edition, Springer-Verlag, Berlin, New York, 1966.

18.  G. Polya, Kombinatorische Anzahlbestmmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145每254.

19.  J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, 1968.

20.  N. Robbins, Some identities connecting partition functions to other number theoretic functions, Rocky Mountain J. Math. 29 (1999) 335每345.

21.  S. Roman, The umbral calculus, Academic Press, Inc., New York, 1984.

22.  S. Roman and G.-C. Rota, The Umbral Calculus, Adv. Math. 27 (1978) 95每188.

23.  G.-C. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

24.  G.-C. Rota, Report on the present state of combinatorics, Discrete Math. 153 (1996) 289每 303.

25.  R.P. Stanley, Enumerative Combinatorics,Wadsworth & Brooks/Cole, Monterey, CA, 1986.

26.  D. Zeilberger, A combinatorial proof of Newton's identities, Discrete Math. 49 (1984) 319.