<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume 6 Issue 2" %>
On PBIBD Designs Based on Triangular Schemes
Malcolm Greig1, Donald L. Kreher2 and Alan C.H. Ling2
1Greig Consulting, North Vancouver, B.C., Canada
2Department of Mathematical Sciences, Michigan Technological University Houghton, MI 49931-1295, USA
{kreher, aling}@mtu.edu
Annals of Combinatorics 6 (2) p.147-155 June, 2002
AMS Subject Classification: 05B30, 05C65, 60C05, 62K99
We settle all but four of the remaining open small parameter situations for partially balanced incomplete block designs with 2 associate classes (PBIBD(2)) that can be based on triangular schemes.
Keywords: partially balanced incomplete block designs, association schemes, triangular designs


1. K.R. Aggarwal, A note on construction of triangular P.B.I.B. design with parameters v = 21; b = 35; r = 10; k = 6; l1 = 1 and l2 = 2, Ann. Math. Statist. 43 (1972) p. 371.

2. L.M. Batten and A. Beutelspacher, Theory of Finite Linear Spaces, Cambridge University Press, Cambridge, UK, 1993.

3. L.-C. Chang, C.-W. Liu, andW.-R. Liu, Incomplete block designs with triangular parameters for which k 10 and r 10, Sci. Sinica 14 (1965) 329C338.

4. C-S. Cheng, G.M. Constatine, and A.S. Hedayat, A unified method for constructing PBIBD designs based on triangular and L2 schemes, J. Roy. Statist. Soc. Ser. B 16 (1984) 31C37.

5. W.H. Clatworthy, Tables of two-associate class partially balanced designs, Nat. Bur. Standards Appl. Math. Ser. 63 (1973).

6. D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search, CRC Press, Boca Raton, FL, 1998.

7. C.W.H. Lam, L. Thiel, S. Swiercz, and J. McKay, The nonexistence of ovals in a projective plane of order 10, Discrete Math. 45 (1983) 318C321.

8. D. Raghavarao, Constructions and combinatorial problems in design of experiments, (Rev. Ed.), Dover, Mineola, NY, 1988.