<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume7 Issue2" %>
The Boson Normal Ordering Problem and Generalized Bell Numbers
P. Blasiak1,2, K.A. Penson1, and A.I. Solomon1
1Université Pierre et Marie Curie, Laboratoire de Physique Théorique des Liquides CNRS URA 7600, Tour 16, 5ièmeétage, 4, place Jussieu, 75252 Paris Cedex 05, France
{blasiak, penson}@lptl.jussieu.fr, a.i.solomon@open.ac.uk
2H. Niewodniczański Institute of Nuclear Physics, ul.Eliasza Radzikowskiego 152 31-342 Kraków, Poland
Annals of Combinatorics 7 (2) p.127-139 June, 2003
AMS Subject Classification: 81R05, 81R15, 81R30, 47N50
Abstract:
For any function F(x) having a Taylor expansion we solve the boson normal ordering problem for , with r, s positive integers, =1, i.e., we provide exact and explicit expressions for its normal form , where in all a's are to the right. The solution involves integer sequences of numbers which, for r, s1, are generalizations of the conventional Bell and Stirling numbers whose values they assume for r=s=1. A complete theory of such generalized combinatorial numbers is given including closed-form expressions (extended Dobinski-type formulas), recursion relations and generating functions. These last are special expectation values in boson coherent states.
Keywords: boson normal order, Bell numbers, Stirling numbers, coherent states

References:

1. M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999) 207–210.

2. R. Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, Singapore, 2001.

3. P. Blasiak, K.A. Penson, and A.I. Solomon, Combinatorics of the boson normal ordering problem, to be published.

4. L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

5. G.M. Constantine and T.H. Savits, A stochastic process interpretation of partition identities, SIAM J. Discrete Math. 7 (1994) 194–202.

6. G. Dattoli, P.L. Ottaviani, A. Torre, and L. Vàzquez, Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, Riv. Nuovo Cim. 20 (2) (1997) 1–133.

7. R.L. Graham, D.E. Knuth, and O.Patashnik, Concrete Mathematics, A Foundation of Computer Science, Addison-Wesley Publishing Co., Reading, 1994.

8. J. Katriel, Bell numbers and coherent states, Phys. Lett. A 237 (2000) 159–161.

9. J. Katriel and G. Duchamp, Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma, J. Phys. A 28 (1995) 7209–7225.

10. J.R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics, Benjamin, New York, 1968.

11. W. Lang, On generalizations of the Stirling number triangles, J. Int. Seqs. Article 00.2.4 (2000) 1–11, http://www.research.att.com/~njas/sequences/JIS/.

12. W.H. Louisell, Quantum Statistical Properties of Radiation, J. Wiley, New York, 1990.

13. K.A. Penson and A.I. Solomon, Coherent state measures and the extended Dobinski relations, In: Proceedings of the Seventh International School of Theoretical Physics: Symmetry and Structural Properties of Condensed Matter, Myczkowce, Poland, September 2002, T. Lulek, B. Lulek, and A. Wal, Eds., World Scientific, Singapore, 2003.

14. K.A. Penson and A.I. Solomon, Coherent states from combinatorial sequences, In: Proceedings of the 2nd International Symposium on Quantum Theory and Symmetries, E. Kapúscik and A. Horzela, Eds., World Scientific, Singapore, 2002, pp. 527–530.

15. J.M. Sixdeniers, K.A. Penson, and A.I. Solomon, Extended Bell and Stirling numbers from hypergeometric exponentiation, J. Int. Seqs. Article 01.1.04 (2001) 1–11, http://www.research.att.com/~njas/sequences/JIS/.

16. H.S. Wilf, Generatingfunctionology, Academic Press, New York, 1994.