<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume7 Issue3" %>
Diagonal Bases in Orlik-Solomon Type Algebras
Raul Cordovil1 and David Forge2
1Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2Laboratoire de Recherche en Informatique, Bâtiment 490, Université Paris Sud 91405 Orsay Cedex, France
Annals of Combinatorics 7 (3) p.247-257 September, 2003
AMS Subject Classification: 52C35, 05B35, 14F40
To encode an important property of the "no broken circuit bases" of the Orlik-Solomon-Terao algebras, Szenes has introduced a particular type of bases, the so called "diagonal basis." We prove that this definition extends naturally to a large class of algebras, the so called -algebras. Our definitions make also use of an "iterative residue formula" based on the matroidal operation of contraction. This formula can be seen as the combinatorial analogue of an iterative residue formula introduced by Szenes. As an application we deduce nice formulas to express a pure element in a diagonal basis.
Keywords: arrangement of hyperplanes, broken circuit, cohomology algebra, matroid, Orlik-Solomon algebra


1. K. Aomoto, Hypergeometric functions, the past, today, and . . . (from the complex analytic point of view) [translation of Sūgaku 45 (3) (1993) 208–220], Sugaku Expositions 9 (1) (1996) 99–116.

2. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics and its Applications 46, Second Ed., Cambridge University Press, Cambridge, 1999.

3. A. Björner and G.M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1) (1992) 105–149.

4. M. Brion and M. Vergne, Arrangement of hyperplanes, I, Rational functions and Jeffrey- Kirwan residue, Ann. Sci. École Norm. Sup. (4) 32 (5) (1999) 715–741.

5. T. Brylawski, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (2) (1977) 417–433.

6. R. Cordovil and G. Etienne, A note on the Orlik-Solomon algebra, Europ. J. Combin. 22 (2001) 165–170.

7. R. Cordovil, A commutative algebra for oriented matroids, Discrete Comput. Geom. 27 (2002) 73–84.

8. M.J. Falk, Combinatorial and algebraic structure in Orlik-Solomon algebras, In: Combinatorial Geometries, Luminy, 1999, Europ. J. Combin. 22 (5) (2001) 687–698.

9. D. Forge and M. Las Vergnas, Orlik-Solomon type algebras, Europ. J. Combin. 22 (2001) 699–704.

10. P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1) (1980) 77–94.

11.  P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (2) (1980) 167–189.

12. P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 300, Springer-Verlag, Berlin, 1992.

13. P. Orlik and H. Terao, Commutative algebras for arrangements, Nagoya Math. J. 134 (1994) 65–73.

14. P. Orlik and H. Terao, Arrangements and hypergeometric integrals, MSJ Memoirs 9, Mathematical Society of Japan, Tokyo, 2001.

15. A. Szenes, Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices (1998) 937–956.

16. A. Szenes, A residue theorem for rational trigonometric sums and Verlinde's formula, preprint, arXiv:math.CO/0109038.

17. N. White, Ed., Theory of Matroids, Encyclopedia of Mathematics and its Applications 26, Cambridge University Press, Cambridge-New York, 1986.

18. N. White, Ed., Combinatorial Geometries, Encyclopedia of Mathematics and its Applications 29, Cambridge University Press, Cambridge-New York, 1987.

19. S. Yuzvinsky, Orlik-Solomon algebras in algebra and topology, Russian Math. Surveys 56 (2) (2001) 293–364.