<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume7 Issue4" %>
The Pick Theorem and the Proof of the Reciprocity Law for Dedekind Sums
Beifang Chen
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
mabfchen@ust.hk
Annals of Combinatorics 7 (4) p.425-439 December, 2003
AMS Subject Classification: 52C05, 11H06, 57N05, 57N15, 57N35
Abstract:
This paper is to provide some new generalizations of the Pick Theorem. We first derive a point-set version of the Pick Theorem for an arbitrary bounded lattice polyhedron. Then, we use the idea of a weight function of [2] to obtain a weighted version. Other Pick type theorems known to the author for the integral lattice Z2 are reduced to some special cases of this generalization. Finally, using an idea of Ehrhart [6] and the Pick Theorem, we give a direct proof of the reciprocity law for Dedekind sums. The ideas and methods presented here may be pushed to higher dimensions.
Keywords: Pick theorem, lattice points, winding number, rotation number, Dedekind sums

References:

1. M. Beck, The reciprocity law for Dedekind sums via the constant Ehrhart coefficient, Amer. Math. Monthly 106 (1999) 459每462.

2. B. Chen, Weight functions, double reciprocity laws, and volume formulas for integral polyhedra, Proc. Natl. Acad. Sci. USA 95 (1998) 9093每9098.

3. B. Chen, Lattice points, Dedekind sums and Ehrhart polynomials of lattice polyhedra, Discrete Comput. Geom. 28 (2002) 175每199.

4. B. Chen and V. Tauraev, Counting lattice points of rational polyhedra, Adv.Math. 155 (2000) 84每97.

5. R. Diaz and S. Robins, The Ehrhart polynomial of a lattice polytope, Ann. Math. 135 (1997) 503每518.

6. E. Ehrhart, Sur un problème de gÉométrie diophantienne linéaire II, J. Reine Angew. Math. 227 (1967) 25每49.

7. W.W. Funkenbusch, From Euler's formula to Pick's theorem using an edge theorem, Amer. Math. Monthly 81 (1974) 647每648.

8. B. Grünbaum and G.C. Shephard, Rotation and winding numbers for planar polygons and curves, Trans. Amer. Math. Soc. 322 (1990) 1169每1187.

9. B. Grünbaum and G.C. Shephard, Pick's theorem, Amer. Math. Monthly 100 (1993) 150每 161.

10. F. Hirzebruch and D. Zagier, The Atiyah-Singer Index Theorem and Elementary Number Theory, Publish or Perish, Inc., Boston, MA, 1974.

11. J.M. Kantor and A.G. Khovanskii, Une application du Théorème de Riemann-Roch combinatorie au polynôme d'Ehrhart des polytopes entiers de Rn, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 501每507.

12. K. Kolodziejczyk, Hadwiger-Wills-type higher-dimensional generalizations of Pick's theorem, Discrete Comput. Geom. 24 (2000) 355每364.

13. I.G. Macdonald, The volume of a lattice polyhedron, Math. Proc. Cambridge Philos. Soc. 59 (1963) 719每726.

14. I.G. Macdonald, Polynomials associated with finite cell complexes, J. London Math. Soc. (2) 4 (1971) 181每192.

15. J. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993) 1每24.

16. H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, D.C., 1972.

17. J.E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc. (3) 7 (1975) 378每 395.

18. J.E. Reeve, A further note on the volume of lattice polyhedra, J. London Math. Soc. 34 (1959) 57-62.

19. D.E. Varberg, Pick's theorem revised, Amer. Math. Monthly 92 (1985) 584每587.

20. D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973) 149每172.