<%@ Page Language="C#" MasterPageFile="~/Main.master" AutoEventWireup="true" Title="Volume8 Issue2" %>
A Unifed Construction of Two-Dimensional Pooling Designs
Tung-Shan Fu and Kwun-Shen Lin
National Pingtung Institute of Commerce, 51 Min-Shen E. Road, Pingtung 900, Taiwan
{tsfu, kslin}@npic.edu.tw
Annals of Combinatorics 8 (2) p.155-159 June, 2004
AMS Subject Classification: 05B30, 05C65, 60C05, 62K99
Following the work of Chateauneuf et al. [3], a simplified construction of a row-column-front diagonal (RCF) design and a union jack design of a prime order using affine transformations is given.
Keywords: lattice square designs, row-column-front diagonal designs, union jack designs


1. D.J. Balding, W.J. Bruno, E. Knill, and D.C. Torney, A comparative survey of non-adaptive pooling designs, In: Genomic Mapping and DNA Sequencing, Vol. 81, IMA, 1996, pp. 133--154.

2. E. Barillot, B. Lacroix, and D. Cohen, Theoretical analysis of library screening using a ndimensional pooling strategy, Nucleic Acids Res. 19 (22) (1991) 6241--6247.

3. M.A. Chateauneuf, C.J. Colbourn, D.L. Kreher, E.R. Lamken, and D.C. Torney, Pooling, lattice square, and union jack designs, Ann. Combin. 3 (1999) 27--35.

4. W.T. Federer and J. Wright, Construction of lattice square designs, Biom. J. 1 (1988) 77--85.

5. M. Hall Jr., Combinatorial Theory, 2nd Ed., John Wiley & Sons, New York, 1986.

6. J.-F. Ma, Pooling designs using transformation matrices, In: Master's Thesis, Department of Applied Mathematics, National Chiao-Tung University, 1999.

7. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938) 377--385.

8. Z. Wan, Geometry of Matrices, World Scientific Publishing, Singapore, 1996.