1. J.-P. Bode and A.M. Hinz, Results and open problems on the Tower of Hanoi, In:
Proceedings of the Thirtieth Southeastern International Conference on Combinatorics,
Graph Theory, and Computing, Boca Raton, FL, 1999, Congr. Numer. 139 (1999) 113–122.
2. N. Claus (= E. Lucas), La Tour d’Hanoi, Jeu de calcul, Science et Nature 1 (8)
(1884) 127– 128.
3. P. Cull and E.F. Ecklund, On the Towers of Hanoi and generalized Towers of Hanoi
problems, Congr. Numer. 35 (1982) 229–238.
4. P. Cull and I. Nelson, Error-correcting codes on the Towers of Hanoi graphs,
Discrete Math. 208/209 (1999) 157–175.
5. H.E. Dudeney, The Canterbury Puzzles (and Other Curious Problems), E.P. Dutton,
New York, 1908.
6. O. Dunkel, Editorial note concerning advanced problem 3918, Amer. Math. Monthly
48 (1941) 219.
7. J.S. Frame, Solution to advanced problem 3918, Amer. Math. Monthly 48 (1941)
216–217.
8. A.M. Hinz, The Tower of Hanoi, Enseign. Math. 35 (1989) 289–321.
9. A.M. Hinz, The Tower of Hanoi, In: Algebras and Combinatorics, Hong Kong, 1997,
Springer, Singapore, 1999, pp. 277–289.
10. A.M. Hinz and A. Schief, The average distance on the Sierpinski gasket, Probab.
Theory Related Fields 87 (1990) 129–138.
11. S. Klavzar, U. Milutinovic, and C. Petr, On the Frame-Stewart algorithm for
the multi-peg Tower of Hanoi problem, Discrete Appl. Math. 120 (2002) 141–157.
12. A.A.K. Majumdar, The generalized four-peg Tower of Hanoi problem, Optimization
29 (1994) 349–360.
13. A.A.K. Majumdar, Generalized multi-peg Tower of Hanoi problem, J. Austral. Math.
Soc. Ser. B 38 (1996) 201–208.
14. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Theory of
Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, reprint of
the 1976 English translation, Classics in Mathematics, Springer-Verlag, Berlin,
1998.
15. B.M. Stewart, Solution to advanced problem 3918, Amer. Math. Monthly 48 (1941)
217– 219.
16. M. Szegedy, In how many steps the k peg version of the Towers of Hanoi Game
can be solved?, In: STACS 99, Trier, Lecture Notes in Computer Science 1563, Springer,
Berlin, 1999, pp. 356–361.