Polynomial Sequences of Binomial Type and Path Integrals

Vladimir V. Kisil
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
kisilv@maths.leeds.ac.uk

Received August 9, 1998

AMS Subject Classification: 05A40, 05A15, 58D30, 81Q30, 81R30, 81S40

Abstract. Polynomial sequences \(p_n(x) \) of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express \(p_n(x) \) as a path integral in the “phase space” \(\mathbb{N} \times [-\pi, \pi] \). The Hamiltonian is \(h(\phi) = \sum_{n=0}^{\infty} p_n(0)/n! e^{in\phi} \) and it produces a Schrödinger type equation for \(p_n(x) \). This establishes a bridge between enumerative combinatorics and quantum field theory. It also provides an algorithm for parallel quantum computation.

Keywords: Feynman path integral, umbral calculus, polynomial sequence of binomial type, token, Schrödinger equation, propagator, wave function, cumulants, quantum computation

* On leaving form the Odessa National University (Ukraine).