Laguerre unitary ensemble perturbed by a pole in the potential

Shuai-Xia Xu
Sun Yat-sen University

joint work with Dan Dai, Yuqiu Zhao and Lun Zhang

Summer Research Institute on q-Series

August 10, 2018
Outline

- Background: Laguerre unitary ensemble
- Laguerre unitary ensemble perturbed by a pole
- Main results
- Proof
Laguerre unitary ensemble (LUE)

LUE is the set of all \(n \times n \) positive definite Hermitian matrices with the following probability measure

\[
\frac{1}{C_n} (\det M)^\alpha e^{-\text{Tr}M} dM, \quad \alpha > -1
\]

where \(C_n \) is a constant, \(\text{Tr}M \) is the trace of \(M \) and
\[
dM = \prod_{i=1}^n dM_{ii} \prod_{i=1}^{n-1} \prod_{j=i+1}^n d\text{Re}M_{ij}d\text{Im}M_{ij}.
\]

The density is described by the Laguerre measure and invariant under unitary conjugation of \(M \), hence the name of LUE.
The joint probability density function for the eigenvalues of LUE is given by

$$
\rho_n(\lambda_1, \lambda_2...\lambda_n) = \frac{1}{Z_n} \prod_{i=1}^{n} w(\lambda_i) \prod_{i<j} |\lambda_i - \lambda_j|^2,
$$

with \(w(x) = x^\alpha e^{-x}, x > 0 \).

Partition function

$$
Z_n = n! D_n[w(x)],
$$

where the Hankel determinants

$$
D_n[w(x)] = \text{det}(\mu_{j+k})_{j,k=0}^{n-1}, \quad \mu_i = \int_0^\infty x^i w(x) dx.
$$
The joint probability density function for the eigenvalues of LUE is given by

\[
\rho_n(\lambda_1, \lambda_2 \ldots \lambda_n) = \frac{1}{Z_n} \prod_{i=1}^{n} w(\lambda_i) \prod_{i<j} |\lambda_i - \lambda_j|^2,
\]

with \(w(x) = x^\alpha e^{-x}, x > 0 \).

Partition function

\[
Z_n = n! D_n[w(x)],
\]

where the Hankel determinants \(D_n[w(x)] = \det(\mu_{j+k})_{j,k=0}^{n-1}, \quad \mu_i = \int_0^{\infty} x^i w(x) dx \).
Correlation kernel (Christoffel-Darboux kernel)

\[K_n(x, y) = \sqrt{w(x)w(y)} \sum_{k=0}^{n-1} P_k(x)P_k(y), \]

\[\rho_n(x_1, x_2 \ldots x_n) = \frac{1}{n!} \det[K_n(x_i, x_j)]_{i,j=1}^n. \]

Density of eigenvalues

\[\psi_n(x) = \frac{1}{n} K_n(x, x). \]

Statistics of eigenvalues for \(n \) large can be obtained by studying the asymptotics of Christoffel-Darboux kernel as \(n \to \infty \).
Correlation kernel (Christoffel-Darboux kernel)

\[K_n(x, y) = \sqrt{w(x)w(y)} \sum_{k=0}^{n-1} P_k(x)P_k(y), \]

\[\rho_n(x_1, x_2, \ldots, x_n) = \frac{1}{n!} \det[K_n(x_i, x_j)]_{i,j=1}^n. \]

Density of eigenvalues

\[\psi_n(x) = \frac{1}{n} K_n(x, x). \]

Statistics of eigenvalues for \(n \) large can be obtained by studying the asymptotics of Christoffel-Darboux kernel as \(n \to \infty \).
Correlation kernel (Christoffel-Darboux kernel)

\[K_n(x, y) = \sqrt{w(x)w(y)} \sum_{k=0}^{n-1} P_k(x)P_k(y), \]

\[\rho_n(x_1, x_2...x_n) = \frac{1}{n!} \det[K_n(x_i, x_j)]_{i,j=1}^n. \]

Density of eigenvalues

\[\psi_n(x) = \frac{1}{n} K_n(x, x). \]

Statistics of eigenvalues for \(n \) large can be obtained by studying the asymptotics of Christoffel-Darboux kernel as \(n \to \infty \).
Global regime: limiting density of eigenvalues of LUE

\[\psi(x) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1-x}{x}}, \quad 0 < x < 1. \]

![Figure: Marčenko-Pastur law](image)

Local limiting eigenvalues behavior in the bulk

\[\lim_{n \to \infty} 4\psi(x)K_n\left(4n\left(x + \frac{u}{n\psi(x)}\right), 4n\left(x + \frac{v}{n\psi(x)}\right)\right) = \frac{\sin \pi(u - v)}{u - v}, \]

for \(x \in (0, 1). \)
Global regime: limiting density of eigenvalues of LUE

\[\psi(x) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1-x}{x}}, \quad 0 < x < 1. \]

![Figure: Marčenko-Pastur law](image)

Local limiting eigenvalues behavior in the bulk

\[\lim_{n \to \infty} 4\psi(x)K_n(4n(x + \frac{u}{n\psi(x)}), 4n(x + \frac{v}{n\psi(x)})) = \frac{\sin \pi(u - v)}{u - v}, \]

for \(x \in (0, 1) \).
Local limiting eigenvalues behavior at the soft edge

\[
\lim_{n \to \infty} 2^{4/3} n^{1/3} K_n\left(4n\left(1 + \frac{u}{(2n)^{2/3}}\right), 4n\left(1 + \frac{v}{(2n)^{2/3}}\right)\right) = \mathbb{A}(u, v),
\]

with \(\mathbb{A}(u, v) = \frac{\text{Ai}(u)\text{Ai}'(v) - \text{Ai}(v)\text{Ai}'(u)}{u - v} \).

At the hard edge

\[
\lim_{n \to \infty} \frac{1}{4n} K_n\left(\frac{u}{4n}, \frac{v}{4n}\right) = \frac{J_\alpha(\sqrt{u})\sqrt{v}J'_\alpha(\sqrt{v}) - J'_\alpha(\sqrt{u})\sqrt{u}J_\alpha(\sqrt{v})}{2(u - v)}.
\]

Universality: The limiting kernels depend only on general property of the density function, but not on the the specific model of random matrices.
Local limiting eigenvalues behavior at the soft edge

\[
\lim_{n \to \infty} 2^{4/3} n^{1/3} K_n(4n(1 + \frac{u}{(2n)^{2/3}}), 4n(1 + \frac{v}{(2n)^{2/3}})) = A(u, v),
\]

with \(A(u, v) = \frac{\text{Ai}(u)\text{Ai}'(v) - \text{Ai}(v)\text{Ai}'(u)}{u-v}\).

At the hard edge

\[
\lim_{n \to \infty} \frac{1}{4n} K_n\left(\frac{u}{4n}, \frac{v}{4n}\right) = \frac{J_{\alpha}(\sqrt{u})\sqrt{v}J'_{\alpha}(\sqrt{v}) - J'_{\alpha}(\sqrt{u})\sqrt{u}J_{\alpha}(\sqrt{v})}{2(u-v)}.
\]

Universality: The limiting kernels depend only on general property of the density function, but not on the specific model of random matrices.
Local limiting eigenvalues behavior at the soft edge

\[
\lim_{n \to \infty} 2^{4/3} n^{1/3} K_n\left(4n\left(1 + \frac{u}{(2n)^{2/3}}\right), 4n\left(1 + \frac{v}{(2n)^{2/3}}\right)\right) = A(u, v),
\]

with \(A(u, v) = \frac{Ai(u)Ai'(v) - Ai(v)Ai'(u)}{u-v} \).

At the hard edge

\[
\lim_{n \to \infty} \frac{1}{4n} K_n\left(\frac{u}{4n}, \frac{v}{4n}\right) = \frac{J_\alpha(\sqrt{u})\sqrt{v} J'_\alpha(\sqrt{v}) - J'_\alpha(\sqrt{u})\sqrt{u}J_\alpha(\sqrt{v})}{2(u-v)}.
\]

Universality: The limiting kernels depend only on general property of the density function, but not on the the specific model of random matrices.
Tracy-Widom distribution

- Gap probability near the soft edge \(\text{Tracy \& Widom ('94)} \)
 \[
 \Pr \left(2(2n)^{1/3}(\lambda_{\text{max}} - 4n) < s \right) \rightarrow F(s).
 \]

- Via Fredholm determinant:
 \[
 F(s) = \det(I - A_s) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_{(s, \infty)^k} \det[A(x_i, x_j)]_{i,j=1}^{k} \, dx_1 \ldots dx_k
 \]
 where \(A_s : L^2(s, +\infty) \rightarrow L^2(s, +\infty) \) with Airy kernel.

- Tracy-Widom distribution:
 \[
 F(s) = \exp \left(- \int_{s}^{+\infty} (x - s)y^2(x) \, dx \right)
 \]
 where \(y(x) \) is the the Hastings-Mcleod solution to \(P_2 \) equation
 \[
 \begin{cases}
 y'' = xy + 2y^3 \\
 y(x) \sim \text{Ai}(x), \quad x \to \infty.
 \end{cases}
 \]
As $s \to -\infty$, we have the large gap asymptotic

$$\ln F(s) = -\frac{1}{12}|s|^3 - \frac{1}{8}\ln |s| + \frac{1}{24}\ln 2 + \zeta'(-1) + o(1).$$

- The constant was first conjectured by Tracy & Widom ('94).
- The constant was proved by Deift, Its and Krasovsky ('11).
- University: Tracy-Widom distribution holds for general unitary random matrix ensembles.
- It also appears in a large family of combinatorial and statistical models: the length of the longest increasing subsequence of a random permutation. Baik, Deift & Johansson ('99)
Gap probability near the hard edge \(\text{Tracy & Widom ('94)} \)

\[
\lim_{n \to \infty} P_n(\lambda_{\min} > \frac{s}{4n}) = \exp\left(-\int_0^s \frac{\sigma(x)}{x} dx\right)
\]

where \(\sigma \) satisfies the Jimbo-Miwa-Okamoto \(\sigma \)-form of the Painlevé III equation

\[
(s\sigma'')^2 + \sigma'(\sigma - s\sigma')(4\sigma' - 1) - \alpha^2\sigma'^2 = 0
\]

with the boundary conditions

\[
\sigma(s) \sim \frac{1}{4^{\alpha+1}\Gamma(1+\alpha)\Gamma(2+\alpha)}s^{1+\alpha}, \ s \to 0.
\]
As $s \to +\infty$, we have the large gap asymptotic

$$\ln F(s) = -\frac{1}{4}s + \alpha s^{1/2} - \frac{\alpha^2}{4} \ln s + \ln \left(\frac{G(1 + \alpha)}{(2\pi)^{\alpha/2}} \right) + o(1)$$

$G(z)$ is the Barnes G-function:

$$G(z + 1) = G(z)\Gamma(z), \quad G(1) = 1.$$

The constant was first conjectured by Tracy & Widom ('94).

The constant was proved by Deift, Its and & Vasilevska ('11).
Laguerre unitary ensembles Perturbed by a pole:

\[\frac{1}{Z_n} \left(\det M \right)\alpha e^{-\text{Tr} V(M)} dM, \quad \alpha > -1 \]

with \(V(x) = x + t/x, x > 0, t > 0 \).

Applications:

- Wigner time delay (Brouwer, Franhm, Beenakker '97, Texier, Majumdar '13)
- Statistics of zeros of Riemann zeta function (Berry and Schukla '08)
- Quantum field theory at finite temperature (Chen and Its '08)
Theorem (Chen and Its ’08)

Let \(w(x, t) = x^\alpha e^{-x-t/x}, x > 0, t > 0 \) and \(n \) be fixed,

\[
\pi_n(x) = \pi_{n+1}(x) + \alpha_n(t)\pi_n(x) + \beta_n(t)\pi_{n-1}(x),
\]

then \(y_n = \alpha_n - (2n + 1 + \alpha) \) satisfies the Painlevé III’

\[
y''_n(t) = \frac{[y'_n(t)]^2}{y_n} - \frac{y'_n(t)}{t} + (2n + 1 + \alpha)\frac{y_n(t)^2}{t^2} + \frac{y_n(t)^3}{t^2} + \frac{\alpha}{t} - \frac{1}{y_n(t)},
\]

and \(H_n(t) = t \frac{d}{dt} \ln D_n[w] \) satisfies \(\sigma \)-form of the Painlevé III,

\[
(tH''_n)^2 + 4(tH'_n - H_n)H'_n(H'_n - 1) - (\alpha H'_n - n)^2 = 0.
\]

Large \(n \) asymptotics of the correlation kernel, the Hankel determinant and the recurrences?
Theorem (Chen and Its ’08)

Let \(w(x, t) = x^\alpha e^{-x-t/x}, x > 0, t > 0 \) and \(n \) be fixed,

\[
x\pi_n(x) = \pi_{n+1}(x) + \alpha_n(t)\pi_n(x) + \beta_n(t)\pi_{n-1}(x),
\]

then \(y_n = \alpha_n - (2n + 1 + \alpha) \) satisfies the Painlevé III’

\[
y_n''(t) = \frac{[y_n'(t)]^2}{y_n} - \frac{y_n'(t)}{t} + (2n + 1 + \alpha) \frac{y_n(t)^2}{t^2} + \frac{y_n(t)^3}{t^2} + \frac{\alpha}{t} - \frac{1}{y_n(t)},
\]

and \(H_n(t) = t \frac{d}{dt} \ln D_n[w] \) satisfies \(\sigma \)- form of the Painlevé III,

\[
(tH_n'')^2 + 4(tH_n' - H_n)H_n'(H_n' - 1) - (\alpha H_n' - n)^2 = 0.
\]

Large \(n \) asymptotics of the correlation kernel, the Hankel determinant and the recurrences?
Global regime (limiting density of eigenvalues)

- For $t = 0$, we have the (Marcenko-Pastur law)

$$
\psi(x; t = 0) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1 - x}{x}}, 0 < x < 1.
$$

- For $t > 0$, the equilibrium-measure with $V(x) = \frac{1}{n}(x + t/x)$

$$
b_n\psi(b_n x; t > 0) dx = \frac{b_n \sqrt{(x - a_n)(1 - x)(x + c_n)}}{2n\pi x^2} dx, x \in (a_n, 1)
$$

with $b_n \sim 4n$, $a_n \sim \frac{1}{4}(t/4n^2)^{2/3}$ and $c_n \sim \frac{1}{2}(t/4n^2)^{2/3}$.

- New limiting kernel in the double scaling limit where $n \to \infty$ and $t \to 0^+$ with proper speed?
Global regime (limiting density of eigenvalues)

For $t = 0$, we have the (Marcenko-Pastur law)

$$\psi(x; t = 0) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1 - x}{x}}, \ 0 < x < 1.$$

For $t > 0$, the equilibrium-measure with $V(x) = \frac{1}{n}(x + t/x)$

$$b_n \psi(b_n x; t > 0) dx = \frac{b_n \sqrt{(x - a_n)(1 - x)(x + c_n)}}{2n\pi x^2} dx, x \in (a_n, 1)$$

with $b_n \sim 4n$, $a_n \sim \frac{1}{4}(t/4n^2)^{2/3}$ and $c_n \sim \frac{1}{2}(t/4n^2)^{2/3}$.

New limiting kernel in the double scaling limit where $n \to \infty$ and $t \to 0^+$ with proper speed?
Global regime (limiting density of eigenvalues)

- For $t = 0$, we have the (Marcenko-Pastur law)

$$\psi(x; t = 0) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1-x}{x}}, 0 < x < 1.$$

- For $t > 0$, the equilibrium-measure with $V(x) = \frac{1}{n}(x + t/x)$

$$b_n\psi(b_n x; t > 0)dx = \frac{b_n \sqrt{(x-a_n)(1-x)(x+c_n)}}{2n\pi x^2} dx, x \in (a_n, 1)$$

with $b_n \sim 4n$, $a_n \sim \frac{1}{4}(t/4n^2)^{2/3}$ and $c_n \sim \frac{1}{2}(t/4n^2)^{2/3}$.

- New limiting kernel in the double scaling limit where $n \to \infty$ and $t \to 0^+$ with proper speed?
Global regime (limiting density of eigenvalues)

For $t = 0$, we have the (Marcenko-Pastur law)

$$\psi(x; t = 0) = \lim_{n \to \infty} 4K_n(4nx, 4nx) = \frac{2}{\pi} \sqrt{\frac{1 - x}{x}}, 0 < x < 1.$$

For $t > 0$, the equilibrium-measure with $V(x) = \frac{1}{n}(x + t/x)$

$$b_n\psi(b_nx; t > 0)dx = \frac{b_n\sqrt{(x - a_n)(1 - x)(x + c_n)}}{2n\pi x^2} dx, x \in (a_n, 1)$$

with $b_n \sim 4n$, $a_n \sim \frac{1}{4}(t/4n^2)^{2/3}$ and $c_n \sim \frac{1}{2}(t/4n^2)^{2/3}$.

New limiting kernel in the double scaling limit where $n \to \infty$ and $t \to 0^+$ with proper speed?
Lax pair for Painlevé III

\[\Psi_\zeta(\zeta, s) = \left(A_0(s) + \frac{A_1(s)}{\zeta} + \frac{A_2(s)}{\zeta^2} \right) \Psi(\zeta, s) \]

\[\Psi_s(\zeta, s) = \frac{B_1(s)}{\zeta} \Psi(\zeta, s) \]

with

\[A_0(s) = \begin{pmatrix} 0 & 0 \\ i/2 & 0 \end{pmatrix}, \quad A_1(s) = \begin{pmatrix} -\frac{1}{4} + \frac{1}{2}r(s) & -i \frac{1}{2} \\ -iq(s) & \frac{1}{4} - \frac{1}{2}r(s) \end{pmatrix}, \]

\[A_2(s) = -sB_1(s) \]

and

\[B_1(s) = \begin{pmatrix} q'(s) & -ir'(s) \\ ip'(s) & -q'(s) \end{pmatrix}. \]
By the compatibility condition $\Psi_{\zeta s}(\zeta, s) = \Psi_{s\zeta}(\zeta, s)$, we have

$$v'' - \frac{v'^2}{v} + \frac{v'}{s} - \frac{v^2}{s^2} - \frac{\alpha}{s} + \frac{1}{v} = 0, \quad v(s) = sr'(s).$$

Let $y(s) = -4v(s^2)/s = -2 \frac{d}{ds} r(s^2)$, we get the Painlevé III,

$$y'' - \frac{y'^2}{y} + \frac{y'}{s} + \frac{y^2}{s} + \frac{16\alpha}{s} + \frac{64}{y} = 0.$$
Proposition. (Dai, Xu and Zhao ’14) For $\alpha > -1$, there exist analytic solutions $r(s)$, $v(s)$ on $(0, \infty)$ with the boundary behaviors

$$r(s) = \frac{1 - 4\alpha^2}{8} + O(s) + O(s^{1+\alpha}), \quad s \to 0;$$

$$r(s) = \frac{3}{2} s^\frac{2}{3} - \alpha s^\frac{1}{3} + O(1), \quad s \to \infty;$$

$$v(s) = O(s) + O(s^{1+\alpha}), \quad s \to 0;$$

$$v(s) = s^\frac{2}{3} - \frac{\alpha}{3} s^\frac{1}{3} + O(1), \quad s \to \infty.$$
Ψ- Kernel:

\[K_\psi(u, v; s) = \frac{\psi_1(-v, s)\psi_2(-u, s) - \psi_1(-u, s)\psi_2(-v, s)}{2\pi i(u - v)} \]

where

\[\frac{\partial}{\partial \zeta} \begin{pmatrix} \psi_1(\zeta, s) \\ \psi_2(\zeta, s) \end{pmatrix} = \begin{pmatrix} A_0(s) + \frac{A_1(s)}{\zeta} + \frac{A_2(s)}{\zeta^2} \end{pmatrix} \begin{pmatrix} \psi_1(\zeta, s) \\ \psi_2(\zeta, s) \end{pmatrix}. \]
Theorem (Dai, Xu and Zhao ('14)).

Let $t \to 0$ and $n \to \infty$ in the way such that $2nt \to s$, we have the double scaling limit

$$\lim_{n \to \infty} \frac{1}{4n} K_n \left(\frac{u}{4n}, \frac{v}{4n}; t \right) = K_\Psi (u, v; s)$$

uniformly for u, v and s in compact subsets of $(0, \infty)$.

Shuai-Xia Xu
Sun Yat-sen University
Transitions from Bessel kernel to Airy kernel:

- The Ψ-kernel is approximated by the Bessel kernel as $s \to 0^+$

$$K_\Psi(u, v) = J_\alpha(u, v) + O(s).$$

- The Ψ-kernel is approximated by the Airy kernel as $s \to \infty$

$$s^{4/9} c^{-1} K_\Psi \left(s^{2/3} \left(1 - \frac{u}{c s^{2/9}} \right), s^{2/3} \left(1 - \frac{v}{c s^{2/9}} \right) \right) = A(u, v)$$
$$+ O \left(s^{-2/9} \right).$$

- Let $a_n = 2^{-4/3} n^{-1/3} t^{2/3}$, $s = 2nt$ and $t > 0$,

$$\lim_{n \to \infty} \frac{a_n}{c s^{2/9}} K_n \left(a_n \left(1 - \frac{u}{c s^{2/9}} \right), a_n \left(1 - \frac{v}{c s^{2/9}} \right); t \right) = A(u, v).$$
Theorem. (Dai, Xu and Zhao '14)

Let $w(x) = x^\alpha e^{-x - \frac{t}{x}}$, $t > 0$, $\alpha > -1$, then as $n \to \infty$ and $t \to 0$ such that $2nt \to s$, we have the asymptotic expansion

$$D_n[w; t] = D_n[w; 0] \exp\left\{ \left[1 + O\left(\frac{1}{n} \right) \right] \int_0^{2nt} \frac{1 - 4\alpha^2 - 8r(\xi)}{16\xi} d\xi \right\}$$

where $D_n[w; 0] = \frac{1}{n!} \prod_{j=1}^{n} j! \Gamma(j + \alpha)$.
Asymptotics of the recurrence coefficients:

- Three-term recurrence relation

\[x \pi_n(x) = \pi_{n+1}(x) + \alpha_n(t)\pi_n(x) + \beta_n(t)\pi_{n-1}(x). \]

- Theorem. (Dai, Xu and Zhao '14)

We have the asymptotic expansion for the recurrence coefficients

\[\alpha_n(t) = 2n + \alpha + 1 + \frac{v(2nt)}{2n} \left(1 + O\left(n^{-1/3}\right) \right), \]

\[\beta_n(t) = n^2 + \alpha n + \frac{4\alpha^2 - 1 + 8r(2nt) - 8v(2nt)}{16} \left(1 + O\left(n^{-1/3}\right) \right), \]

uniformly for \(t \in (0, d] \), \(d > 0 \) fixed.
Corollary As $t \to d > 0$ and $n \to \infty$, then $s = 2nt \to \infty$

$$\alpha_n(t) = 2n + \alpha + 1 + \frac{t^{2/3}}{2^{1/3}} \frac{1}{n^{1/3}} + O \left(\frac{1}{n^{2/3}} \right),$$

$$\beta_n(t) = n^2 + \alpha n + 2^{-4/3} t^{2/3} n^{2/3} + O \left(n^{1/3} \right).$$
Perturbed Gaussian unitary ensemble (Brightmore, Mezzadri and Mo ‘14)

\[
\frac{1}{Z_n} e^{-n \text{Tr} V(M)} dM
\]

\[V(x) = \frac{x^2}{2} + \frac{t_1^2}{x^2} - \frac{t_2}{x}, \quad t_1 \in R \setminus \{0\}, \quad t_2 \geq 0.
\]

- Asymptotics of the partition functions: PDE.
- For \(t_2 = 0 \), the PDE is reduced to Painlevé III.
Higher order singularity and Painlevé III hierarchy (Atkin, Claeys and Mezzadri ('15))

\[\frac{1}{Z_n}(\det M)^\alpha e^{-n\text{Tr} V_k(M)}dM \]

with

\[V_k = V(x) + \left(\frac{t}{x}\right)^k, \quad x > 0. \]

• \(V \) is such that the E-measure is

\[\psi_V(x) = \sqrt{\frac{b-x}{x}}h(x), \quad x \in (0, b). \]

• Painlevé III hierarchy limit kernel.

• Painlevé III hierarchy asymptotics of the partition functions for the perturbed Laguerre weight

\[V_k = x + \left(\frac{t}{x}\right)^k. \]
The distribution of the smallest eigenvalue in PLUE can be expressed in terms of the Fredholm determinant of Painlevé III kernels,

\[
\lim_{n \to \infty} \text{Prob} [\lambda_{\text{min}} > x/cn)] = \det[I - K_{x}^\text{PIII}],
\]

where \(K_{x}^\text{PIII} \) is the integral operator acting on \(L^2(0, x) \) with the Painlevé III kernel \(K_{\psi}(u, v; s) \).

Question

1. Is possible to find analogous expressions of the Tracy-Widom formulas for the determinants of the Painlevé III kernels?
2. Large gap asymptotics for the determinants?
The distribution of the smallest eigenvalue in PLUE can be expressed in terms of the Fredholm determinant of Painlevé III kernels,

\[\lim_{n \to \infty} \text{Prob} [\lambda_{\text{min}} > x/cn] = \det[I - K_{x}^{\text{PIII}}], \]

where \(K_{x}^{\text{PIII}} \) is the integral operator acting on \(L^{2}(0, x) \) with the Painlevé III kernel \(K_{\Psi}(u, v; s) \).

Question

1. Is possible to find analogous expressions of the Tracy-Widom formulas for the determinants of the Painlevé III kernels?
2. Large gap asymptotics for the determinants?
Theorem \text{Dai, Xu & Zhang(’17)}

For $\alpha > -1$, $x > 0$ and $s > 0$, let K_{x}^{PIII} be the integral operator with kernel $K_{\psi}(u, v; s)$ acting on the function space $L^2((0, x))$, we have the large gap asymptotics $x \to +\infty$

\[
\ln \det [I - K_{x}^{\text{PIII}}] = -\frac{1}{4}x + \alpha x^{1/2} - \frac{\alpha^2}{4} \ln x
\]
\[
+ \int_{0}^{s} \frac{1}{2t} \left(r(t) + \frac{\alpha^2}{2} - \frac{1}{8} \right) dt + \ln \left(\frac{G(1 + \alpha)}{(2\pi)^{\alpha/2}} \right)
\]
\[
+ O \left(x^{-1/2} \right),
\]

where the function $r(t)$ is smooth solution to the Painlevé III equation.
Remark. As $s \to 0$, we recovered the large gap asymptotics of the Bessel kernel

$$\ln \det[I - K_x^{\text{Bes}}] = -\frac{1}{4} x + \alpha x^{1/2} - \frac{\alpha^2}{4} \ln x + \ln \left(\frac{G(1 + \alpha)}{(2\pi)^{\alpha/2}} \right) + o(1).$$

Remark. It is interesting to see the appearance of Painlevé III function in the large gap asymptotics

$$\int_0^s \frac{1}{2t} \left(r(t) + \frac{\alpha^2}{2} - \frac{1}{8} \right) dt.$$
Remark. As $s \to 0$, we recovered the large gap asymptotics of the Bessel kernel

$$\ln \det[I - K_{\text{Bes}}^x] = -\frac{1}{4}x + \frac{\alpha^2}{4} \ln x + \ln \left(\frac{G(1 + \alpha)}{(2\pi)^{\alpha/2}} \right) + o(1).$$

Remark. It is interesting to see the appearance of Painlevé III function in the large gap asymptotics

$$\int_{0}^{s} \frac{1}{2t} \left(r(t) + \frac{\alpha^2}{2} - \frac{1}{8} \right) dt.$$
Large gap asymptotics of the determinant of Painlevé II kernel ($\alpha = 0$)
- Integral of Hastings-McLeod solution of Painlevé II.
- Constant: Riemann zeta-function.

Painlevé II, XXXIV-kernel determinant
- Integral of Painlevé XXXIV function.
- Constant: Riemann zeta-function.
Large gap asymptotics of the determinant of Painlevé II kernel ($\alpha = 0$) \textit{Bothner & Its (’14)}
- Integral of Hastings-McLeod solution of Painlevé II.
- Constant: Riemann zeta-function.

Painlevé II, XXXIV-kernel determinant \textit{Dai & Xu (’17)}
- Integral of Painlevé XXXIV function.
- Constant: Riemann zeta-function.
Theorem

Dai, Xu & Zhang ('17)

For $\alpha > -1$, $x > 0$ and $s > 0$, let K_{x}^{PIII} be the integral operator with kernel $K_{\psi}(u, v; s)$ acting on the function space $L^{2}((0, x))$, we have

$$
\det[I - K_{x}^{\text{PIII}}] = \exp \left(- \int_{0}^{\sqrt{s}} [a(\tau; x/s) - a(\tau; 0)] d\tau \right),
$$

where the function $a(\lambda; s)$ is the smooth solution to the coupled Painlevé III system with the asymptotic behavior as $\tau \to 0^{+}$

$$
a(\tau; x) = \frac{1 - 4\alpha^{2}}{8\tau} + O(\tau^{1+2\alpha}).
$$
Tracy-Widom type formula for Painlevé II, XXXIV-kernel determinant are obtained and expressed in terms of integral of solutions to the Coupled Painlevé II system.

Dai & Xu (’17)
In deriving Painlevé III limiting kernel:

- Asymptotics of the orthogonal polynomials $\pi_n(z)$ with respect to the perturbed Laguerre weight $w(x; t) = x^\alpha e^{-x-t/x}$.

Riemann-Hilbert problem for OPs (Fokas & Its ('92))

- $Y(z)$ is analytic on $\mathbb{C} \setminus [0, \infty)$.
- \[Y_+(x) = Y_-(x) \begin{pmatrix} 1 & w(x; t) \\ 0 & 1 \end{pmatrix}, \quad x > 0. \]
- \[Y(z) = (I + O(1/z)) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}. \]
- Solution

\[
Y(z) = \begin{pmatrix} \pi_n(z) & \frac{1}{2\pi i} \int_0^\infty \frac{\pi_n(x)w(x; t)}{x-z} \, dx \\ -2\pi i \gamma_{n-1}^2 \pi_{n-1}(z) & -\gamma_{n-1}^2 \int_0^\infty \frac{\pi_{n-1}(x)w(x; t)}{x-z} \, dx \end{pmatrix}
\]
Proofs

- Painlevé III-kernel determinant
 - Its-Izergin-Korepin-Slavnov Riemann-Hilbert problem
 - Tracy-Widom formulas:
 First undress the IIKS Riemann-Hilbert problem, derive systems of differential equations for the solution to the RH problem and then analyze their Lax-compatibility.
 - Large gap asymptotics
 - Constant: the Painlevé III-kernel reduces to the Bessel kernel.

Shuai-Xia Xu
Sun Yat-sen University
Thank you!